Feeds

Quantum transistors at room temp

Save Moore's law by getting rid of semiconductors

Choosing a cloud hosting partner with confidence

The world might still be 20 years from the end of Moore's Law, but the hunt for technologies to replace semiconductors is going on right now. A group from Michigan Technological University is offering one such alternative: a quantum tunnelling transistor that operates at room temperature.

The culmination of work begun in 2007, their demonstration has been published in Advanced Materials, here (abstract).

Moore's famous observation (the number of transistors on an IC doubles roughly every two years) is one day going to run into two physical constraints: the feature size of the transistor, and its ability to dissipate heat.

Quantum properties are seen as a promising replacement for semiconductors on both scores: transistors can be built at the single-atom scale, and they don't have the same heat dissipation issues. However, most quantum effect transistors need to function at cryogenic temperatures.

That makes room temperature operation an important goal for development – and that's what the MTU group, led by MTU physicist Yoke Khin Yap, is claiming.

Their quantum transistor is fabricating by placing gold quantum dots on boron nitride nanotubes. The three-nanometre gold dots were placed using lasers, while the nanotubes both provide insulation between the dots, and confine the dots.

Working with Oak Ridge National Laboratory, the MTU group then applied a voltage electrodes at both ends at room temperature, and observed electrons tunnelling from dot-to-dot.

However, that tunnelling only happened with enough voltage: below the critical voltage, electrons don't get enough energy to make the jump between dots – making the device a quantum transistor that doesn't need semiconducting material.

As fellow physicist John Jaszczak, who developed the theoretical framework for Yap's work, explains in the university's announcement, the device has to be about one micron long and 20 nanometres wide to operate.

“The gold islands have to be on the order of nanometers across to control the electrons at room temperature,” Jaszczak said. “If they are too big, too many electrons can flow. Working with nanotubes and quantum dots gets you to the scale you want for electronic devices.” ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Canberra drone team dances a samba in Outback Challenge
CSIRO's 'missing bushwalker' found and watered
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.