Feeds

Google preps wave of machine learning apps

Chocolate Factory engineers automate own jobs out of existence

The smart choice: opportunity from uncertainty

Google is preparing to unleash a wave of apps that get intelligence from its mammoth machine learning models.

The apps will all rely on the neural networks Google has been developing internally to allow its systems to automatically classify information that has traditionally been tough for computers to parse. This includes human speech or unlabeled images, said Jeffrey Dean a fellow in Google's Systems Infrastructure Group who helped create MapReduce and GFS, to the GigaOm Structure in San Francisco on Wednesday.

"I've been working on a machine learning system for the last couple of years that is using biologically inspired neural networks," Dean said. "These kinds of models are very useful in a whole bunch of different domains."

Machine learning uses neural networks that evolve through hierarchies of successively more specific stages to gain sensitivities for particular characteristics of data. One Google project from mid-2012 that used the tech giant's DistBelief machine learning tech, proved that the internet really is made of cats, when part of the Chocolate Factory's neural network developed an appreciation of felines after being fed a diet of YouTube thumnbails.

Now, Google is planning many more applications that make use of the technology. "We deployed a speech detector on Android that drops our error rate by a significant amount and a lot of that is attributable [to machine learning]," Dean said. "A lot of apps we haven't deployed yet that are trying to use language understanding for these kinds of models."

The wide rollout of this technology will have major ramifications for consumers of Google's services, Dean said, and could become a dominant approach for cracking certain classes of problems.

"I think this kind of perceptual machine learning is going to significantly change how people interact with devices," he said. "Speech recognition is now reliable enough that you can build complicated [features] around just speech."

Machine learning is so important to Google that it is one of the areas that the company's dedicated research wing works on. Many within the company foresee a combination of complex finely-tuned neural networks and vast quantities of user data as being one of the best ways to create and train weak artificial intelligences.

But the technology requires advanced hardware, Dean said, noting that the models are "intensive for floating point operations" when training. If you're Google, that means you need to spread the computation across thousands of CPU cores, and if you're other, smaller companies, it requires low-level coding to take advantage of GPUs, as a gang of Stanford Academics have recently done.

Far beyond CPUs and GPUs though, is an approach Google and NASA are investigating that uses a $15m quantum-ish computer made by D-Wave systems, but Dean isn't talking about that – yet. ®

Securing Web Applications Made Simple and Scalable

More from The Register

next story
KDE releases ice-cream coloured Plasma 5 just in time for summer
Melty but refreshing - popular rival to Mint's Cinnamon's still a work in progress
NO MORE ALL CAPS and other pleasures of Visual Studio 14
Unpicking a packed preview that breaks down ASP.NET
Secure microkernel that uses maths to be 'bug free' goes open source
Hacker-repelling, drone-protecting code will soon be yours to tweak as you see fit
Cheer up, Nokia fans. It can start making mobes again in 18 months
The real winner of the Nokia sale is *drumroll* ... Nokia
Put down that Oracle database patch: It could cost $23,000 per CPU
On-by-default INMEMORY tech a boon for developers ... as long as they can afford it
Another day, another Firefox: Version 31 is upon us ALREADY
Web devs, Mozilla really wants you to like this one
Google shows off new Chrome OS look
Athena springs full-grown from Chromium project's head
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.