Spin doctors brazenly fiddle with tiny bits in front of the neighbours

Quantum computer address bus just nanometres wide

New hybrid storage solutions

The University of New South Wales, working with Sandia National Laboratories in New Mexico, is celebrating what it hopes will be another step towards large-scale quantum computing: a technique that can address single electron qubits separated by mere nanometres.

Quantum bits - qubits - are the quantum-physics counterpart to the binary bits that make up data stored in today's digital computers - except that whereas your traditional binary bit is either 1 or 0, a qubit can be 1, 0 or what's known as a superposition of both. A quantum computer should be able to use this property to process huge numbers of calculations in parallel.

But at some point classical binary data will need to be written to a line of qubits, which is where today's research comes in.

“It is a daunting challenge to rotate the spin of each qubit individually,” said Holger Büch, lead author of the new study.

“If each electron spin-qubit is hosted by a single phosphorus atom, every time you try to rotate one qubit, all the neighbouring qubits will rotate at the same time – and quantum computation will not work. But if each electron is hosted by a different number of phosphorus atoms, then the qubits will respond to different electromagnetic fields – and each qubit can be distinguished from the others around it,” he says.

So there's the engineering challenge: create a material in which you've controlled the number of individual phosphorus atoms.

Professor Michelle Simmons, Holger Büch's supervisor, described the engineering involved to The Register.

The UNSW trick is in its use of a scanning tunnelling electron microscope, which can image single atoms on a surface – in this case, a surface of silicon, with a layer of hydrogen on top.

The researchers applied a voltage to the tip of the microscope, which removes the hydrogen under the tip. The surface is then bathed in phosphene gas, which deposits phosphorus atoms on the exposed silicon surface. When the surface is heated, the phosphorus atoms will displace the silicon.

Finally, thin layers of silicon are grown over the top, one at a time.

As a result, the technique is able to place very precise numbers of phosphorus atoms on the surface to act as qubits.

To be more accurate, it's the outermost electron in the phosphorus atom's shell that acts as the qubit (more on this in a minute) – and to sense something so small, one more thing is needed. Single electron transistors – a specialty of UNSW – are fabricated onto the structure to sense the spin of the phosphorus electrons, providing the reading mechanism.

In case you hadn't noticed, we haven't yet reached a point at which the atoms can act as a quantum computer – we're still back at “manipulating single electrons” like IBM demonstrated with its “boy and his atom” video. The spin is controlled with magnetic fields, with the whole system cryogenically cooled.

The crucial non-classical “spookiness” arrives when entanglement is created between spin states on different atoms. They need to be very close together to enable entanglement, but the system needs to resolve on a sufficiently fine scale to address single atoms.

Professor Simmons told The Register the research team is considering the work a double breakthrough: in addition to the fabrication success, she said, the material produces qubits with a long lifetime. Once the electron is put into its spin-up state, that can last for seconds.

That's why researchers favour silicon in solid-state quantum computation, she said: it can produce long-lived states. With the lifetime lasting in the seconds, “you can do a large number of operations without losing the state of the electron.”

The UNSW group is part of the Australian Centre of Excellence for Quantum Computation and Communication Technology. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Thought that last dinosaur was BIG? This one's bloody ENORMOUS
Weighed several adult elephants, contend boffins
Chelyabinsk-sized SURPRISE asteroid to skim Earth, satnav birds
Space rock appears out of nowhere, buzzes planet on Sunday
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
'Duck face' selfie in SPAAAACE: Rosetta's snap with bird comet
Probe prepares to make first landing on fast-moving rock
Square Kilometre Array reveals its 1.6TB-a-day storage and network rigs
Boolardy Engineering Test Array - aka BETA - is about to come out of Beta
prev story


Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.