Feeds

Spin doctors brazenly fiddle with tiny bits in front of the neighbours

Quantum computer address bus just nanometres wide

Choosing a cloud hosting partner with confidence

The University of New South Wales, working with Sandia National Laboratories in New Mexico, is celebrating what it hopes will be another step towards large-scale quantum computing: a technique that can address single electron qubits separated by mere nanometres.

Quantum bits - qubits - are the quantum-physics counterpart to the binary bits that make up data stored in today's digital computers - except that whereas your traditional binary bit is either 1 or 0, a qubit can be 1, 0 or what's known as a superposition of both. A quantum computer should be able to use this property to process huge numbers of calculations in parallel.

But at some point classical binary data will need to be written to a line of qubits, which is where today's research comes in.

“It is a daunting challenge to rotate the spin of each qubit individually,” said Holger Büch, lead author of the new study.

“If each electron spin-qubit is hosted by a single phosphorus atom, every time you try to rotate one qubit, all the neighbouring qubits will rotate at the same time – and quantum computation will not work. But if each electron is hosted by a different number of phosphorus atoms, then the qubits will respond to different electromagnetic fields – and each qubit can be distinguished from the others around it,” he says.

So there's the engineering challenge: create a material in which you've controlled the number of individual phosphorus atoms.

Professor Michelle Simmons, Holger Büch's supervisor, described the engineering involved to The Register.

The UNSW trick is in its use of a scanning tunnelling electron microscope, which can image single atoms on a surface – in this case, a surface of silicon, with a layer of hydrogen on top.

The researchers applied a voltage to the tip of the microscope, which removes the hydrogen under the tip. The surface is then bathed in phosphene gas, which deposits phosphorus atoms on the exposed silicon surface. When the surface is heated, the phosphorus atoms will displace the silicon.

Finally, thin layers of silicon are grown over the top, one at a time.

As a result, the technique is able to place very precise numbers of phosphorus atoms on the surface to act as qubits.

To be more accurate, it's the outermost electron in the phosphorus atom's shell that acts as the qubit (more on this in a minute) – and to sense something so small, one more thing is needed. Single electron transistors – a specialty of UNSW – are fabricated onto the structure to sense the spin of the phosphorus electrons, providing the reading mechanism.

In case you hadn't noticed, we haven't yet reached a point at which the atoms can act as a quantum computer – we're still back at “manipulating single electrons” like IBM demonstrated with its “boy and his atom” video. The spin is controlled with magnetic fields, with the whole system cryogenically cooled.

The crucial non-classical “spookiness” arrives when entanglement is created between spin states on different atoms. They need to be very close together to enable entanglement, but the system needs to resolve on a sufficiently fine scale to address single atoms.

Professor Simmons told The Register the research team is considering the work a double breakthrough: in addition to the fabrication success, she said, the material produces qubits with a long lifetime. Once the electron is put into its spin-up state, that can last for seconds.

That's why researchers favour silicon in solid-state quantum computation, she said: it can produce long-lived states. With the lifetime lasting in the seconds, “you can do a large number of operations without losing the state of the electron.”

The UNSW group is part of the Australian Centre of Excellence for Quantum Computation and Communication Technology. ®

Remote control for virtualized desktops

More from The Register

next story
FORGET the CLIMATE: FATTIES are a MUCH BIGGER problem - study
Fat guy? Drink or smoke? You're worse than a TERRORIST
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
Rosetta probot drilling DENIED: Philae has its 'LEG in the AIR'
NOT best position for scientific fulfillment
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
HUMAN DNA 'will be FOUND ON MOON' – rocking boffin Brian Cox
Crowdfund plan to stimulate Blighty's space programme
Post-pub nosh neckfiller: The MIGHTY Scotch egg
Off to the boozer? This delicacy might help mitigate the effects
I'M SO SORRY, sobs Rosetta Brit boffin in 'sexist' sexy shirt storm
'He is just being himself' says proud mum of larger-than-life physicist
NASA launches new climate model at SC14
75 days of supercomputing later ...
LIFE, JIM? Comet probot lander found 'ORGANICS' on far-off iceball
That's it for God, then – if Comet 67P has got complex molecules
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Choosing a cloud hosting partner with confidence
Download Choosing a Cloud Hosting Provider with Confidence to learn more about cloud computing - the new opportunities and new security challenges.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.