Feeds

Australian unis to test quantum-comms-over-fibre

Tests to see if entangled photons can survive real-world networks

Intelligent flash storage arrays

The University of New South Wales, one of the world's leaders in quantum computing research, will get the chance to put its work to the test in Australia's capital city, Canberra.

Within a few months, two nodes on Canberra's ICON network – one at the Australian National University, the other at the Australian Defence Force Academy – will be connected as a validation network for quantum key distribution technologies from QuintessenceLabs.

Professor Elanor Huntington, head of school in UNSW's School of Engineering and IT and a member of CQC2T, told The Register the proof-of-concept link will be aided by infrastructure and engineering support from QuintessenceLabs.

The group is seeking both to validate the operation of the quantum communication systems, and to test how well they operate on a live network, she said.

Into the future, the test bed will also provide a platform for more blue-sky research. When new quantum crypto protocols are proposed, Professor Huntington explained, a platform is needed to demonstrate that it operates and is at least as secure as its predecessors.

“At every step [of quantum communications research] you have to prove that what's proposed is actually an advance,” she said.

Professor Huntington highlighted the University of Queensland as a hotbed of theoretical work on quantum computing and communications in Australia. With the ICON network available and the high concentration of experimentalists in the discipline, Canberra is a natural place to create a test bed to complement that theoretical work.

ICON, the Intra-government Communications Network, is a federal-government owned fibre that spans Canberra's parliamentary triangle and beyond.

An example of quantum key distribution is to create entangled photons to carry the values of the shared secret between two ends of a conversation. Should a third party intercept or observe the key, the loss of entanglement should be measurable to the recipient since the entanglement is destroyed. ®

Security for virtualized datacentres

More from The Register

next story
Boffins who stare at goats: I do believe they’re SHRINKING
Alpine chamois being squashed by global warming
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
MARS NEEDS WOMEN, claims NASA pseudo 'naut: They eat less
'Some might find this idea offensive' boffin admits
No sail: NASA spikes Sunjammer
'Solar sail' demonstrator project binned
Carry On Cosmonaut: Willful Child is a poor taste Star Trek parody
Cringeworthy, crude and crass jokes abound in Steven Erikson’s sci-fi debut
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.