Feeds

Australian unis to test quantum-comms-over-fibre

Tests to see if entangled photons can survive real-world networks

Build a business case: developing custom apps

The University of New South Wales, one of the world's leaders in quantum computing research, will get the chance to put its work to the test in Australia's capital city, Canberra.

Within a few months, two nodes on Canberra's ICON network – one at the Australian National University, the other at the Australian Defence Force Academy – will be connected as a validation network for quantum key distribution technologies from QuintessenceLabs.

Professor Elanor Huntington, head of school in UNSW's School of Engineering and IT and a member of CQC2T, told The Register the proof-of-concept link will be aided by infrastructure and engineering support from QuintessenceLabs.

The group is seeking both to validate the operation of the quantum communication systems, and to test how well they operate on a live network, she said.

Into the future, the test bed will also provide a platform for more blue-sky research. When new quantum crypto protocols are proposed, Professor Huntington explained, a platform is needed to demonstrate that it operates and is at least as secure as its predecessors.

“At every step [of quantum communications research] you have to prove that what's proposed is actually an advance,” she said.

Professor Huntington highlighted the University of Queensland as a hotbed of theoretical work on quantum computing and communications in Australia. With the ICON network available and the high concentration of experimentalists in the discipline, Canberra is a natural place to create a test bed to complement that theoretical work.

ICON, the Intra-government Communications Network, is a federal-government owned fibre that spans Canberra's parliamentary triangle and beyond.

An example of quantum key distribution is to create entangled photons to carry the values of the shared secret between two ends of a conversation. Should a third party intercept or observe the key, the loss of entanglement should be measurable to the recipient since the entanglement is destroyed. ®

Next gen security for virtualised datacentres

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
China building SUPERSONIC SUBMARINE that travels in a BUBBLE
Shanghai to San Fran in two hours would be a trick, though
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
Astronomers scramble for obs on new comet
Amateur gets fifth confirmed discovery
prev story

Whitepapers

A new approach to endpoint data protection
What is the best way to ensure comprehensive visibility, management, and control of information on both company-owned and employee-owned devices?
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Maximize storage efficiency across the enterprise
The HP StoreOnce backup solution offers highly flexible, centrally managed, and highly efficient data protection for any enterprise.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.