Feeds

Supercomputer vid proves NASA black-hole ring sniffers were RIGHT

BILLION-DEGREE blasts from cosmic halos turn up in simulation

Internet Security Threat Report 2014

Video Stellar-mass black holes produce their highest-energy light from the turbulent froth of their gas corona, boffins have discovered with the help of a massive amount of supercomputing power.

Astronomers from NASA, Johns Hopkins University and the Rochester Institute of Technology used 960 of the Ranger supercomputer's nearly 63,000 central processing units over 27 days to confirm long-held suspicions about how gas behaves around a black hole.

"Our work traces the complex motions, particle interactions and turbulent magnetic fields in billion-degree gas on the threshold of a black hole, one of the most extreme physical environments in the universe," said lead researcher Jeremy Schnittman, an astrophysicist at NASA's Goddard Space Flight Center.

Gas sucked in towards a black hole first orbits around it and then accumulates into a sort of flattened disc before spiralling in, getting more and more compressed and heated as it nears the centre. The temperature of this compressed gas eventually reaches up to 20 million degrees Fahrenheit (12 million °C), around 2,000 times hotter than the surface of the Sun, and shines brightly in low-energy, or soft, X-rays.

However, observations also show that black holes shine with large amounts of hard X-rays, lighting up to hundreds of times brighter than soft X-rays, implying that even hotter gas at temperatures of billions of degrees is present.

Using the Ranger supercomputer at the Texas Advance Computing Centre in the University of Texas, the boffins modelled the environment and showed that both types of X-rays come from gas spiralling in toward the black hole. The rising temperature, density and speed of the gas being sucked into the event horizon* dramatically amplifies magnetic fields in the disc, which then put even more pressure on the gas.

The result is a corona of gas whipping around the black hole at speeds approaching the speed of light in a structure similar to the corona around the Sun, as predicted by astronomers.

"Black holes are truly exotic, with extraordinarily high temperatures, incredibly rapid motions and gravity exhibiting the full weirdness of general relativity," John Hopkins' Julian Krolik said. "But our calculations show we can understand a lot about them using only standard physics principles."

The study was based on a non-rotating black hole but the models are now being extended to spinning ones, where rotation pulls the inner edge of the disc further inward and conditions are even more extreme.

The paper, "X-ray Spectra from MHD Simulations of Accreting Black Holes", published in The Astrophysical Journal, is available on arXiv here. ®

* As described by NASA boffins: "The event horizon is the boundary where all trajectories, including those of light, must go inward. Nothing, not even light, can pass outward across the event horizon and escape the black hole."

Beginner's guide to SSL certificates

More from The Register

next story
Docker's app containers are coming to Windows Server, says Microsoft
MS chases app deployment speeds already enjoyed by Linux devs
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
'Urika': Cray unveils new 1,500-core big data crunching monster
6TB of DRAM, 38TB of SSD flash and 120TB of disk storage
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
SDI wars: WTF is software defined infrastructure?
This time we play for ALL the marbles
Windows 10: Forget Cloudobile, put Security and Privacy First
But - dammit - It would be insane to say 'don't collect, because NSA'
Oracle hires former SAP exec for cloudy push
'We know Larry said cloud was gibberish, and insane, and idiotic, but...'
Symantec backs out of Backup Exec: Plans to can appliance in Jan
Will still provide support to existing customers
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Win a year’s supply of chocolate
There is no techie angle to this competition so we're not going to pretend there is, but everyone loves chocolate so who cares.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.