Feeds

MIND CONTROL HAT makes CHOPPER do what BRAIN says

'An aperture! Go into it' - can students think anything else?

  • alert
  • submit to reddit

The smart choice: opportunity from uncertainty

In a development with potentially huge consequences in the field of care for the disabled (also the related fields of disembodied brains in bubbling jars, cyborgs, human-machine interfaces etc) a group of students have shown that they can accurately control a small drone helicopter using only a specialised electroencephalographic hat.

Check out the vid:

"In previous work we showed that humans could control a virtual helicopter using just their thoughts. I initially intended to use a small helicopter for this real-life study; however, the quadcopter is more stable, smooth and has fewer safety concerns," enthuses engineering prof Bin He, from Minnesota uni.

Apparently no fewer than five students (three of them female) were able to successfully make the chopper do what they wanted it to. We're told that the controls work like this:

The noninvasive technique used was electroencephalography (EEG), which recorded the electrical activity of the subjects' brain through a cap fitted with 64 electrodes.

Facing away from the quadcopter, the subjects were asked to imagine using their right hand, left hand, and both hands together; this would instruct the quadcopter to turn right, left, lift, and then fall, respectively. The quadcopter was driven with a pre-set forward moving velocity and controlled through the sky with the subject's thoughts.

The subjects were positioned in front of a screen which relayed images of the quadcopter's flight through an on-board camera, allowing them to see which direction it was travelling in. Brain signals were recorded by the cap and sent to the quadcopter over WiFi.

He and his colleagues have published a paper setting out their results, including comparisons with ordinary manually-piloted quadcopters etc, in the Journal of Neural Engineering, here. The prof expects that such methods could be used to let disabled people control cybernetic limbs or other prostheses.

"Our next goal is to control robotic arms using noninvasive brain wave signals, with the eventual goal of developing brain–computer interfaces that aid patients with disabilities or neurodegenerative disorders," He says. ®

Eight steps to building an HP BladeSystem

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
prev story

Whitepapers

Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.