Feeds

Watch quantum entanglement – IN REAL TIME

Photons do the spooky action dance on YouTube

Intelligent flash storage arrays

It doesn't actually demonstrate any new properties of entanglement, but it's cool anyhow: a group of Austrian physicists have produced a video showing entanglement in real time.

Yep, what Einstein called “spooky action at a distance” is now on YouTube (below).

It took a fair amount of work for the scientists from the University of Vienna and the Austrian Academy of Sciences to assemble the video. The experiment was designed by PhD student Robert Fickler, using an intensified charge-coupled device (ICCD) camera to capture the two ends of the photonic entanglement.

As their http://www.nature.com/srep/2013/130529/srep01914/full/srep01914.html#affil-auth paper in Nature notes, “namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner.”

The setup is shown below.

The experimental setup

Experimental setup to visualise entanglement. Source: Nature

Two polarisation-entangled photons are produced in the grey box, one sent directly to a detector that triggers the camera, the other sent – with a long enough fibre to match the trigger delay – through a polarising beam splitter, three half-wave plates, a spatial light modulator and a polariser before arriving at the camera.

Watch Video

The correspondence between the light and dark areas on the video is showing how the measurement of one photon is affecting the polarisation of the other – in other words, entanglement in action. As the authors write: “the high-contrast minima and maxima shift in very good correspondence to the polarisation angle measured on the partner photon.”

To make sure they weren't just putting their own interpretation on what they saw, the researchers also measured the entanglement: “Since the registered signal of the camera depends linearly on the detected photon number, we determine the average signal per detected photon and its error margin from many single photon events”.

And there is a serious point to all of this: “With this relation between registered signal and corresponding photon number it is possible to spatially analyse any recorded intensity image without the need for individual counting of single photons over a time consuming data acquisition of many sparse images.” ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
Post-pub nosh neckfiller: The MIGHTY Scotch egg
Off to the boozer? This delicacy might help mitigate the effects
I'M SO SORRY, sobs Rosetta Brit boffin in 'sexist' sexy shirt storm
'He is just being himself' says proud mum of larger-than-life physicist
NASA launches new climate model at SC14
75 days of supercomputing later ...
The next big thing in medical science: POO TRANSPLANTS
Your brother's gonna die, kid, unless we can give him your, well ...
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
prev story

Whitepapers

Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
5 critical considerations for enterprise cloud backup
Key considerations when evaluating cloud backup solutions to ensure adequate protection security and availability of enterprise data.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Protecting against web application threats using SSL
SSL encryption can protect server‐to‐server communications, client devices, cloud resources, and other endpoints in order to help prevent the risk of data loss and losing customer trust.