The Register® — Biting the hand that feeds IT

Feeds

Intel's extreme ultraviolet dream still somewhere over the rainbow

What will stop us from breaking Moore's Law now?

5 ways to reduce advertising network latency

The great ultraviolet hope that will enable Intel to break the 10nm chip geometry barrier is further away than ever, the vendor’s CTO has admitted, raising the spectre of Moore’s Law* running out of steam.

The breakthrough revolves around the distance between the circuit-lines chipmakers can etch onto the surface of a computer processor. With the advent of extreme ultraviolet lithography (EUVL), the processor industry said it would be able to etch lines on silicon much closer together than ever before. That was over a decade ago...

Justin Rattner, speaking to The Register in Dublin last week, confirmed that over 12 years after the processor industry first started flagging EUVL as the next big thing, the technology is still somewhere over the rainbow.

Intel and its partners were talking up EUV lithography way back in 2001, pitching the technology as a crucial element in the drive to etch chip components at ever smaller geometries using light at wavelengths shorter than the optical spectrum.

Back then EUV was seen as part of the roadmap to get parts down to 32nm.

As recently as 2009, the vendor was talking about EUV enabling it to cost-effectively go smaller than 32nm, with production possibly kicking in this year. As of today, the vendor is happily popping out chips at 22 nanometers using refinements of existing lithographical technologies.

While manufacturing processes and components are not part of his CTO remit, Rattner last week seemed to suggest EUV-based chip manufacturing was as far away as ever.

“I think the issue right now with EUV is...trying to come up with the light sources of sufficient brightness that they don’t reduce throughput to a significant degree. That’s the big fear. That the light sources won’t be bright enough, throughput will go down, costs will go up, it just won’t be attractive.”

The problem is not a purely academic one, according to Rattner. “I think it's the case we’re going to reach a point before the end of the decade where in the absence of a reliable EUV lithography technology that we’re going to have trouble dealing in the next critical dimension.

“It’s a necessary technology. We’re OK at 22(nm), we’re OK at 14, we’ll probably get to 10. Then maybe it's going to get tougher,” he said.

Asked if the jump constituted a threat to Moore’s law - the off-the-cuff quip that has become the benchmark for measuring Intel’s technological progress - Rattner replied: “Oh sure. Absolutely.”

In the meantime, Intel seems set to deploy its habitual get-out-of-jail card - throwing ever more transistors at the problem.

“This is the perfect example of necessity being the mother of invention,” said Rattner. “So what has allowed us to continue patterning... is the advent of computational lithography and these phase shift masks and the fact that we’re able to computationally determine the correction necessary for the mask to actually result in the pattern at the wafer level.”

Now, he said, people were talking about deploying “multiple masks per step”.

“If the light sources don’t materialise I’m sure we can throw more computing power. I don’t know how many, if any, other manufacturing processes are out there that depend so critically on high performance computing. The creation of these masks is just a function of pure compute power.” ®

* Chip daddy Carver Mead coined the phrase, which refers to a 1965 paper written by Intel co-founder Gordon Moore. Simply put, it projects that the number of transistors on integrated circuits - and ultimately processing speed - doubles approximately every two years. The law is loosely used by the semiconductor industry to plot R&D targets.

Email delivery: Hate phishing emails? You'll love DMARC

Whitepapers

Microsoft’s Cloud OS
System Center Virtual Machine manager and how this product allows the level of virtualization abstraction to move from individual physical computers and clusters to unifying the whole Data Centre as an abstraction layer.
5 ways to prepare your advertising infrastructure for disaster
Being prepared allows your brand to greatly improve your advertising infrastructure performance and reliability that, in the end, will boost confidence in your brand.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Avere FXT with FlashMove and FlashMirror
This ESG Lab validation report documents hands-on testing of the Avere FXT Series Edge Filer with the AOS 3.0 operating environment.
Email delivery: Hate phishing emails? You'll love DMARC
DMARC has been created as a standard to help properly authenticate your sends and monitor and report phishers that are trying to send from your name..

More from The Register

next story
Chaos Computer Club: iPhone 5S finger-sniffer COMPROMISED
Anyone can touch your phone and make it give up its all
Full Steam Ahead: Valve unwraps plans for gaming hardware
Seeding 300 beta machines to members with enough friends
Fandroids at pranksters' mercy: Android remote password reset now live
Google says 'don't be evil', but it never said we couldn't be mischievous
EU move to standardise phone chargers is bad news for Apple
Faster than a speeding glacier but still more powerful than Lightning
Samsung unveils Galaxy Note 3: HOT CURVES – the 'gold grill' of smartphone bling
Flat screens are so 20th century, insist marketing bods
Samsung: Sod off Apple, we've made gold mobes for way longer than you
'Go back to queuing for a pink iPhone from your favorite frivolous-lawsuits company'
DEAD STEVE JOBS kills Apple bounce patent from BEYOND THE GRAVE
Biz tyrant's iPhone bragging ruled prior art
prev story