Feeds

Machine learning climbs atop Hadoop

Pattern hoists machine-learning models onto HDFS

Intelligent flash storage arrays

Hadoop whisperer Concurrent has released a free tool for porting machine-learning models over to Hadoop.

The Pattern tool lets you run machine-learning models on top of the Hadoop compute and storage framework via either exported Predictive Model Markup Language (PMML) files or a Pattern Java API.

Designing machine-learning models requires a precise set of skills, and though the technology can bring great efficiencies by creating automated programs that can, say, automatically score query results by relevance, it is rare that machine-learning experts – who are a subcategory of the data scientist breed of tech bod – are also familiar with the vagaries of MapReduce jobs.

Rather, many data scientists work within the confines of mathematical or machine-learning programs such as R or MicroStrategies – and it can be a tall order for these people to learn HDFS and MapReduce sufficiently to re-implement their algorithms on large HDFS-stored datasets.

With Patterns, Concurrent has created a free technology that can take machine-learning models exported into PMML files and run them atop Hadoop. "You should be able to export from your favorite tools your PMML docs and get into production at least at scale," Concurrent founder Chris Wensel says. "The goal with Pattern is to be able to apply a [machine-learning] scoring model and run it at scale."

Pattern is the third prong in Concurrent's pitchfork for getting useful data in and out of Hadoop without having to learn the vagaries of the application. It sits alongside the company's Java API for Hadoop and its Lingual add-on for making SQL queries on Hadoop easy.

The tool is designed for data scientists who are unfamiliar with Hadoop but want to use the technology to run machine-learning models against large pools of data. It works with any program capable of exporting a model as a PMML file – R, MicroStrategies, SAS, and so on.

"We've used the Cascading APIs and implemented the scoring aspect of these models against the cascading APIs," Wensel says. "It'll generalize itself thanks to the facilities Hadoop provides. If you export the model from R into PMML and run [it] across Hadoop, it'll parallelize itself appropriately."

Pattern is part of Concurrent's overall strategy of shifting Cascading into an all-purpose translation layer for people who want to access the inherent scalability of Hadoop without having to invest time in learning its peculiarities.

Its closest contemporary would be the open source Apache Mahout project. However, Mahout is more a selection of HDFS-compatible machine learning algorithms than anything else, so it lacks the flexibility and tooling that software like R may have.

"Mahout is a set of standalone and independent applications that have to be orchestrated with other applications to do their job, each using different file formats," Wensel says. "This is fundamentally very brittle and adds lots of latency to the applications."

The company expects existing Cascade users such as Airbnb will start experimenting with the Patterns tool imminently. It is already in use by AgileOne.

Over time, Concurrent hopes to build an ecosystem of complementary tools for Hadoop around the Cascading data analysis software. This announcement comes after the company took $4m from VCs to give it time to follow through on Wensel's ambition to "build a sustainable business around Cascading." ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Be real, Apple: In-app goodie grab games AREN'T FREE – EU
Cupertino stands down after Euro legal threats
Download alert: Nearly ALL top 100 Android, iOS paid apps hacked
Attack of the Clones? Yeah, but much, much scarier – report
You stupid BRICK! PCs running Avast AV can't handle Windows fixes
Fix issued, fingers pointed, forums in flames
Microsoft: Your Linux Docker containers are now OURS to command
New tool lets admins wrangle Linux apps from Windows
Facebook, working on Facebook at Work, works on Facebook. At Work
You don't want your cat or drunk pics at the office
Soz, web devs: Google snatches its Wallet off the table
Killing off web service in 3 months... but app-happy bonkers are fine
First in line to order a Nexus 6? AT&T has a BRICK for you
Black Screen of Death plagues early Google-mobe batch
prev story

Whitepapers

Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
10 threats to successful enterprise endpoint backup
10 threats to a successful backup including issues with BYOD, slow backups and ineffective security.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Protecting users from Firesheep and other Sidejacking attacks with SSL
Discussing the vulnerabilities inherent in Wi-Fi networks, and how using TLS/SSL for your entire site will assure security.