Feeds

Hold our tiny silicon spheres, say gravity wave detection scientists

Nano-sensors in optical trap for more sensitive instrument

  • alert
  • submit to reddit

Bridging the IT gap between rising business demands and ageing tools

A group of scientists from the University of Nevada at Reno says tiny sensors – small enough to be suspended in an optical trap – could pave the way for a new kind of ultra-sensitive gravity wave sensor.

That is, of course, if gravity waves exist: predicted by Einstein's general theory of relativity, gravity waves have proven elusive. In spite of instruments so sensitive they're upset by vacuum noise, nobody has conclusively detected gravity waves so far.

To measure a gravity wave, physicists need to detect the minuscule space-time distortions that would occur when it passes. A typical approach is to try and measure an interference pattern at the intersection of two lasers, reflected from test mass mirrors a long way apart.

The Reno group says they're trying to overcome the problem of friction, since the local effect of a gravity wave may be smaller than the friction acting on the test masses. By suspending a tiny, laser-cooled tunable sensor in an optical cavity, they're also offering a much smaller gravity wave detector that could sense “signals” in the 50 kHz to 300 kHz range.

The group's paper, published at Arxiv and in Physical Review Letters, proposes trapping 150 nanometer silicon spheres in the optical cavity – a standing wave of light between two mirrors. This “frictionless” approach, the researchers hope, would be more sensitive than conventional approaches.

University of Nevada Gravity Wave Detector

University of Nevada's Andrew Geraci with his proposed apparatus. Image: Mike Wolterbeek, University of Nevada

As University of Nevada assistant physics professor Andrew Geraci explains, successful detection of gravity waves would open up a new astronomical view of the universe: “the invention of a gravitational wave detector, which lets us 'see' the universe through gravity waves, is analogous to the invention of the telescope.” ®

Mobile application security vulnerability report

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
All those new '5G standards'? Here's the science they rely on
Radio professor tells us how wireless will get faster in the real world
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Microsoft's anti-bug breakthrough: Wire devs to BRAIN SCANNERS
Clippy: It looks your hands are shaking, are you sure you want to commit this code?
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.