Feeds

MIT takes battery-powered robot cheetah for a gallop

Biomimetic big cat needs no power cord, just a walker

Secure remote control for conventional and virtual desktops

Video Fast, agile robots for reconnaissance and rescue have been under development for half a decade or more, but they all have needed to be tethered to a power cable. Now MIT thinks it has cut the leash with a battery powered "cheetah" capable of outrunning a human.

The design, showed off at the International Conference on Robotics and Automation this month, borrows heavily in design from the animal kingdom. It's about the same size and weight as a regular cheetah, uses Kevlar tendons on its legs to make them 60 per cent more efficient, and has a spine controlled by the movement of the robot's legs.

Alternative running robot designs, such as the DARPA-funded Boston Dynamics cheetah, use hydraulics to power strides, but MIT decided that these were too heavy, and so developed a "three phase permanent magnet synchronous motor". This is more power-efficient and torquey than commercial electric systems, and uses regenerative motors to reuse power in a way similar to that used by hybrid cars.

The scientists say this design gives MIT's cheetah a cost of transport (COT) ratio (defined as power consumption divided by weight times velocity) of 0.52, which is about the ratio of a flesh-and-blood cat. By comparison Honda's Asimo robot has a COT of 2 and Boston Dynamics's petrol-powered Big Dog robot pack animal has a COT of 15.

This conservation of power means that the new design won't need an electrical cable to operate, and instead will use four 22.2-V lithium polymer batteries to maintain a pace of 5.2 mph (8.3 kph) for 1.23 hours, IEEE Spectrum reports, giving it a range of 6.2 miles (10km).

There's a cost for this design in terms of speed however – Boston Dynamics's machine can run at 28.3 mph (45.5kph) but MIT's effort can only manage 13.7 mph (22 kph). While that's only half as fast, it's still good enough to outpace most humans over its range.

Before you start having nightmares about being hunted down by robots, there's still work to be done. While MIT's robot is power-independent there's still a lot more to be done in terms of balancing itself in three dimensions – in testing, the robot has to be strung up in a walking frame in case it topples over.

There's also going to be extra power issues to sort out before the MIT cheetah becomes viable. A military robot in the field will need some kind of camera and communications system to relay data back to base, and if it's weaponized that will mean more weight.

In El Reg's opinion the designer should just stick a pair of titanium teeth on the robot and let it run – it would be enough to scare most soldiers back into their foxholes if a horde of these cheetahs sprinted towards them. ®

Providing a secure and efficient Helpdesk

More from The Register

next story
TEEN RAMPAGE: Kids in iPhone 6 'Will it bend' YouTube 'prank'
iPhones bent in Norwich? As if the place wasn't weird enough
George Clooney, WikiLeaks' lawyer wife hand out burner phones to wedding guests
Day 4: 'News'-papers STILL rammed with Clooney nuptials
iPAD-FONDLING fanboi sparks SECURITY ALERT at Sydney airport
Breaches screening rules cos Apple SCREEN ROOLZ, ok?
Crouching tiger, FAST ASLEEP dragon: Smugglers can't shift iPhone 6s
China's grey market reports 'sluggish' sales of Apple mobe
Apple's new iPhone 6 vulnerable to last year's TouchID fingerprint hack
But unsophisticated thieves need not attempt this trick
The British Museum plonks digital bricks on world of Minecraft
Institution confirms it's cool with joining the blocky universe
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.