Feeds

D-Wave wins the quantum-classical horse race, kind of

For the right problem, quantum computing wins

Seven Steps to Software Security

It's official, it seems: the D-Wave isn't a “real” quantum computer, but it does handle some classes of problems a lot faster than a classical desktop computer.

That's the result of the first attempt to benchmark the company's adibiatic quantum computer, but it comes with caveats.

But first, some background. D-Wave is a Canadian outfit that says it can sell you a quantum computer right now. The company says its D-Wave Two offers a "512-qubit processor chip ... housed inside a cryogenics system within a 10 square meter shielded room." The company doesn't claim to have a fully quantum computer, but instead to have designed and manufactured "processors required to use quantum effects to compute".

That's understandably contentious, which probably sparked sufficient interest to get this research done. The study was conducted by Catherine McGeoch of Amhurst College in the USA, and Cong Wang of Canada's Simon Fraser University. McGeoch is a 25-year veteran at setting up tests of computing performance and the author of A Guide to Experimental Algorithms.

In a paper to be presented to the ACM conference in Italy on May 15 and published in the New York Times, McGeoch tests the adibiatic quantum computation technique called quantum annealing against various solvers running on desktop computers.

In D-Wave's corner, problems were presented to a 439-qubit instance for solution in one of two modes: quantum annealing for “native instances” that can be solved directly on the quantum hardware; and “Blackbox” mode, a hybrid approach which “alternates heuristic search with hardware queries” (as D-Wave explains, Blackbox is a hardware-software compiler designed to present an abstraction layer so that programmers don't have to try and program their problems directly to the hardware).

McGeoch compared these two approaches to three software solvers: IBM's CPLEX, the open-source METSlib tabu search solver, and the Akmaxsat solver. The tests were run on various problems that fall into the NP-Hard category: quadratic unconstrained binary optimisation, QUBO (a pattern matching problem), the weighted maximum 2-satisfiability problem (W2SAT), and the quadratic assignment problem (QAP).

The performance summary is:

  • For QUBO, the quantum annealing solver smacked down the best software solver, running 3,600 times faster than CPLEX for a 439-qubit problem.
  • There was no difference between Blackbox and the software solvers for the W2SAT problem.
  • For the QAP problem, while the research doesn't mention timeframe, Blackbox outperformed the METSlib tabu solver by finding best solutions in more cases – it turned up 28 solutions for 33 cases, while tabu only found nine.

McGeoch emphasised that it's not yet a “fair” test, however, suggesting that more significant results would be obtained comparing the D-Wave approach to classical hardware that's been optimised for the same set of problems. As is, she notes, a general purpose computer will always be slower than “a device dedicated to solving a specific problem”.

However, the test result – particularly the QUBO test – are being taken as evidence that something quantum-like is happening in the D-Wave, since it converged on the solution almost instantly compared to the classical computer. So it seems that with the right problem – in particular, a problem that maps well onto the quantum hardware – entanglement and superposition are happening.

For D-Wave, the challenge will be to “generalise” its hardware so as not to be confined only to esoteric problems. ®

The Power of One eBook: Top reasons to choose HP BladeSystem

More from The Register

next story
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
All those new '5G standards'? Here's the science they rely on
Radio professor tells us how wireless will get faster in the real world
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Application security programs and practises
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.