Feeds

Climate-cooling effect 'stronger than volcanoes' is looking solid

Could be time to massage those hot models again

Beginner's guide to SSL certificates

A newly discovered mechanism for cooling the planet - potentially, according to its discoverers, more significant even than the well-known chilling effects of volcanic eruptions - has now been further investigated.

The mechanism in question is the action of difficult-to-study atmospheric molecules known as "Criegee intermediates", whose existence was first theorised in the 1950s by German chemist Rudolf Criegee but not confirmed until recent years by boffins using methods which have only lately become available.

Criegee intermediates act to produce extra sulphuric acid - a well-known and powerful atmospheric aerosol which causes additional clouds to form, which in turn cools the climate. This mechanism is seen in action after major volcanic eruptions, which hurl huge amounts of sulphates into the sky causing acid to form and resulting in easily detectable global cool spells - for instance the one following the eruption of Mount St Helens.

According to Professor Carl Percival, Criegee intermediates released naturally into the atmosphere by living ecosystems have a constant cooling effect which could be at least as big as that produced by volcanic eruptions. Last year, after the initial confirmation that at least one of the tricky chemicals existed and worked as described, he said:

"This new source of atmospheric sulphates is at least as important as the one we knew about already, and in some cases it can dominate."

Sulphur-based aerosols are already acknowledged by all sides in the climate debate as a major factor in climate modelling, so the added effect potentially produced by Criegee intermediates could mean a serious adjustment downwards for future climate forecasts.

However the actual effect to be assigned was highly uncertain, as nobody could say for sure how quickly the exotic chemicals would do their work. The state of play has now moved forward somewhat, however, as Percival and his fellow scientists have moved on to measure the effects of a second Criegee intermediate: namely CH3CHOO.

“One of the main questions from our first study was if this increased reactivity would be observed for other Criegee intermediates, so with these findings we now have additional evidence that Criegee intermediates are indeed powerful oxidisers of pollutants such as nitrogen dioxide and sulphur dioxide," explains Percival in a statement issued today by his university, Manchester.

“What this study suggests is that the biosphere could have a significant impact on aerosol production and thus potentially climate cooling via the formation of Criegee intermediates," he adds. "The next steps will be to carry out modelling studies to quantify the impact of Criegee intermediates on climate and to quantify the level of alkene present in various environments.”

As and when that work is completed, it might perhaps go some way towards explaining the generally flat global temperatures seen over the last decade and more, which are increasingly puzzling for those climate scientists who had expected them to keep going up at the rate they did between 1970 and the 1990s.

Percival and his colleagues' latest study is published by the journal Science, here. ®

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
The next big thing in medical science: POO TRANSPLANTS
Your brother's gonna die, kid, unless we can give him your, well ...
NASA launches new climate model at SC14
75 days of supercomputing later ...
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
Why CIOs should rethink endpoint data protection in the age of mobility
Assessing trends in data protection, specifically with respect to mobile devices, BYOD, and remote employees.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?