Feeds

Space elevators, vacuum chutes: What next for big rocket tech?

How boffins hope to escape long shadow of the V2

Securing Web Applications Made Simple and Scalable

Tripping the light fantastic

Proponents of laser-assisted launch systems might also like to consider their electricity consumption. Dr Jordin T Kare's "modular laser launcher" would require "hundreds or thousands" of ground-based lasers, "each of which transmits a relatively small amount of power to a laser-powered rocket vehicle".

Diagram of the modular laser launcher system

Dr Jordin T Kare's modular laser launch system

Scientists have various flavours of laser propulsion systems on the menu. These include: ablative, which uses a pulsed laser aimed at a solid metal fuel, burning off a thrust-producing plasma; pulsed plasma, where the breakdown of a gas such as air, and the resulting expanding plasma, provides thrust; and laser electric propulsion - the conversion of the beam's energy into electricity, for example via photovoltaic cells.

In 2003, NASA hailed the world's first laser-powered aircraft, which used just such photovoltaic cells collecting energy from a remote laser to drive a small electric motor.

NASA's laser-powered aircraft in flight. Pic: Tom Tschida, Dryden Flight Research Center

NASA's laser-powered aircraft

Such aircraft will fly as long as their panels are targeted by the laser, but that's not really practical for high-altitude operation at long distance. Dr Kare's hybrid solution is to use laser energy to heat a launch vehicle's fuel via a heat exchanger. His multi-laser approach would appear to give a good chance of continuous power delivery, albeit at the cost of a massive ground operation.

Still, the potential environmental impact of vast laser farms spreading across the landscape probably wouldn't be as great as that of using nuclear power to get into space, as suggested by Project Orion scientists.

Artist's impression of the proposed Orion spacecraft heading away from Earth. Pic: NASA

Orion

In 1958, the US started work on a nuclear pulse propulsion system - simply a series of nuclear detonations delivering massive thrust - was theoretically capable of lifting a 3,629 tonne Orion vehicle plus a 1,451 tonne payload into LEO.

The spaceship's massive size was dictated by the smallest nuclear device available, of which 800 would be required to reach LEO. Bombs would be continually ejected at the rate of around one per second through a "pusher plate", explode, and propel the vehicle. The damped pusher plate smoothed the delivery of thrust to the spacecraft above.

Diagram of the Orion propulsion system. Pic: NASA

Very hot stuff: The Orion propulsion system

The yield of each bomb was 0.14 kt - a modest amount but the total for a launch was 112 kt, greater than that of a W76 thermonuclear warhead.

Concerns over fallout led to loss of political support for the programme; the 1963 Partial Test Ban Treaty finally killed it. The technology still has its supporters as a means for interplanetary travel, on the assumption it's used once spacecraft are a safe distance from Earth.

We'll wrap up this look at space launch technologies with what is very much flavour of the month in get-me-off-this-planet circles: the space elevator.

Requiring nothing more than a cable tethered to the Earth's surface and extending beyond geostationary orbit with a "counterweight" at the end, the current space tether concept is the offspring of the space tower proposal to build our way into orbit.

As gravity decreases up the length of the cable, the centrifugal forces increase. The balance of the two keeps the cable taut and the upper end in a fixed position above the surface.

Having got our long rope to the stars in place, we can then ride elevators up the cable into orbit, from where our conquest of the galaxy is assured.

NASA concept picture of a space elevator

Going up: NASA's concept for a space elevator

NASA has taken a keen interest in space elevators, as has the private sector.

Japan's Obayashi Corporation has declared it will be able to whisk passengers upwards by 2050, thanks to carbon nanotube technology.

The Obayashi Corporation concept for a space elevator

The Obayashi Corporation's space elevator

The carbon nanotube is vital to the space elevator. When Russian scientist Konstantin Tsiolkovsky first considered extending the Eiffel Tower into space in 1895, he was doubtless aware that the weight of the beast would simply crush it at the base.

Now that this compression structure plan has given way to a tensile structure model, the weight of the cable still poses a big problem. Lightweight carbon nanotubes are the solution, scientists say, and perhaps within a decade or so we'll be in a position to begin weaving our space cable.

Until that happens, we'll leave you with one last theoretical means of escaping Earth's pull and Wernher von Braun's long shadow, which is to our minds at least as feasible as the space elevator...

Bones, Kirk and Spock prepare to transport in Star Trek

Beam me up, Wernher...

®

HP ProLiant Gen8: Integrated lifecycle automation

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
MARS NEEDS OCEANS to support life - and so do exoplanets
Just being in the Goldilocks zone doesn't mean there'll be anyone to eat the porridge
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.
Mobile application security vulnerability report
The alarming realities regarding the sheer number of applications vulnerable to attack, and the most common and easily addressable vulnerability errors.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.