Feeds

Rocket boffinry in pictures: Gulp the Devil's venom and light a match

How scientists sup from Wernher von Braun's cup

Build a business case: developing custom apps

Europe

The European Space Agency's (ESA) Ariane 5 has a heavyweight reputation in the commercial launch sector, and its 2011 lift of the 20.06-tonne Automated Transfer Vehicle (ATV) Johannes Kepler - carrying supplies to the International Space Station - showed it has the clout to mix it with the big boys.

The heavy-lift Ariane 5 ECA. Pic: ESA

The heavy-lift Ariane 5 ECA

Ariane was spawned in a 1973 agreement between France, Germany and Britain. While the the 1-4 models evolved from ICBM technology, the 5 series represented a virtually complete redesign intended for tasks such as carrying the proposed Hermes spacecraft into orbit. The Evolution Cryotechnique type A (ECA) variant, seen above, is a satellite-lifting workhorse capable of hefting 10 tonnes, while the more powerful ES (Evolution Storable) model is responsible for ATV duty.

Since 1996, the Ariane 5 has performed 68 launches, with four failures. It relies on LH2/LOX for single main and second-stage engines, backed by two SRBs.

These boosters are - in common with those from the space shuttle programme and small motors regularly used by amateur rocketeers - packed with ammonium perchlorate composite propellant (APCP).

This is a solid mass of oxidising ammonium perchlorate and aluminium powder, held in a binder - commonly hydroxyl-terminated polybutadiene (HTPB), which is also a fuel in its own right for some hybrid rockets.

In the case of the Ariane 5, the boosters provide 92 per cent of thrust at lift-off, with each burning 138 tonnes of APCP until separation at an altitude of about 60km.

SRBs provide plenty of bangs per buck, although their obvious disadvantage is they can't be turned off once you hit the igniter button.

APCP will continue to give the Ariane 5 a leg-up for the foreseeable future. The ESA hopes to have an "ES Galileo" version of the rocket ready by 2014, able to put four Galileo global navigation system satellites into orbit in one hit.

India

Since its establishment in 1969, the Indian Space Research Organisation (ISRO) has overseen the subcontinent's advance from its first satellite - 1975's Soviet-launched Aryabhata - to the 2008 Chandrayaan-1 lunar orbiter and impactor mission.

Chandrayaan-1 was launched atop a Polar Satellite Launch Vehicle (PSLV), and the ISRO website offers overviews of this and the country's other operational lifter: the Geosynchronous Satellite Launch Vehicle (GSLV).

India's Geostationary Satellite Launch Vehicle (GSLV) blasts off from Satish Dawan Space Center at Sriharikota in September 2004. Pic: Indian Space Research Organisation

India's Geostationary Satellite Launch Vehicle (GSLV) blasts off from Satish Dawan Space Center at Sriharikota in September 2004

The PSLV's range of thruster types is interesting. The first stage boasts "one of the largest solid propellant boosters in the world", tipping the scales at 139 tonnes of fuel. It's assisted by six strap-on solid propellant motors, four fired on launch and two in the air.

The second stage "Vikas" engine is a N2O4/UDMH unit, while the third is once again fuelled by solid propellant. The fourth stage has two engines fuelled by the hypergolic reaction between monomethylhydrazine (MMH) and nitrogen oxides.

The three-stage GSLV has the same solid propellant first stage as the PSLV, but with four Vikas engine boosters strapped on. The second stage is propelled by a single Vikas engine, and the third has a liquid hydrogen/LOX motor.

The ISRO is currently developing the Geosynchronous Satellite Launch Vehicle Mark-III (GSLV III), with two solid boosters, a liquid-fuelled second stage and a final LH2/LOX push capable of putting satellites weighing anywhere between 4,500kg and 5,000kg into orbit.

In 2007, the country announced it will put a pair of astronauts into a seven-day low-Earth orbit in 2016, thereby becoming the fourth nation in the extra-atmospheric manned mission club.

Japan

Japan's first forays into space - such as its first satellite Ohsumi, launched in 1970 - relied on purely solid rocket motor technology.

However, as the Hayabusa probe blasted off en route to the Itokawa asteroid in 2003, propelled by a M-V solid-fuel rocket, the country was struggling to get its HII liquid-fuelled programme off the ground.

The National Space Development Agency of Japan (absorbed into the newly formed Japan Aerospace Exploration Agency - JAXA - in 2003) suffered two early failures of the LH2/LOX rocket, and it wasn't until 2005 that a HIIA model enjoyed its first successful flight.

In its standard configuration, the HIIA's single main engine is augmented by two "polybutadiene composite solid propellant boosters", lifting the second stage and its LH2</LOX engine heavenwards.

JAXA's H-II B on the launch pad in July 2012. Pic: JAXA

JAXA's H-II B on the launch pad in July 2012

The mightier HIIB has two first-stage liquid motors, plus four solid boosters, and a LH2/LOX second stage.

The HIIB's maiden flight was the 2009 H-II Transfer Vehicle (HTV) mission to the International Space Station, in support of the orbiting outpost's Kibo laboratory.

According to JAXA, the HIIB's two primary roles are HTV operations and multiple satellite launches. The HIIA is also capable of lifting multiple kit, as it showed back in January when it deployed two satellites, including the Information Gathering Satellite (IGS), designed to warn of hostile missile activity.

Secure remote control for conventional and virtual desktops

Next page: Russia

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
China building SUPERSONIC SUBMARINE that travels in a BUBBLE
Shanghai to San Fran in two hours would be a trick, though
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.