Feeds

Lotsa lasers an option for the Next Big Physics

What's next after colliders?

SANS - Survey on application security programs

If you thought the world of big physics was drawing to a close with the confirmation that yes, the Higgs boson appears to be a boson and appears to be a Higgs, think again: CERN's boffins, along with thinkers of deep thoughts from École Polytechnique, Southampton University's Optoelectronics Centre and Jena are imagining what the world's next generation of particle accelerators may look like.

The answer might be “a very, very bright laser”, and to look at the feasibility of this, they've joined together with a dozen other laboratories worldwide to form the ICAN – the International Coherent Amplification Network – consortium.

What they hope to establish is whether lasers could produce both the huge energy inputs a post-LHC particle physics would need, at the same time as getting the high pulse repetition rates required.

However, rather than a single laser with enough power to deliver an Earth-shattering kaboom – which in a particle acceleration context would then have to be recharged thousands of times each second – ICAN's idea is to slave together a large number of far smaller lasers.

Scattering the laser sources to the four winds – apologies, massively distributing the laser sources – allows the power to be similarly distributed, which at the megawatt scale is easier than in a single device.

In the context of particle physics, a laser could impart enough energy to accelerate particles to high energy over distances “measured in centimetres rather than kilometres as is the case today using conventional technology,” said consortium leader, École's Gérard Mourou.

Doing without the huge machines and cost of an LHC “is of critical importance for the future of high-energy physics”, he added.

According to the University of Southampton's Dr Bill Brocklesby, recent proof-of-concept work has demonstrated that the disparate lasers can be controlled “within a fraction of a wavelength … thousands of fibres can be controlled to provide a laser output powerful enough to accelerate electrons to energies of several GeV at 10 kHz repetition rate.”

Their work has been published in Nature Photonics (abstract here). ®

Top three mobile application threats

More from The Register

next story
Red-faced LOHAN team 'fesses up in blown SPEARS fuse fiasco
Standing in the corner, big pointy 'D' hats
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
LOHAN's Punch and Judy show relaunches Thursday
Weather looking good for second pop at test flights
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
Curiosity finds not-very-Australian-shaped rock on Mars
File under 'messianic pastries' and move on, people
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
Top Secret US payload launched into space successfully
Clandestine NRO spacecraft sets off on its unknown mission
New FEMTO-MOON sighted BIRTHING from Saturn's RING
Icy 'Peggy' looks to be leaving the outer rings
Melting permafrost switches to nasty, high-gear methane release
Result? 'Way more carbon being released into the atmosphere as methane'
prev story

Whitepapers

Designing a defence for mobile apps
In this whitepaper learn the various considerations for defending mobile applications; from the mobile application architecture itself to the myriad testing technologies needed to properly assess mobile applications risk.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.