Feeds

Lotsa lasers an option for the Next Big Physics

What's next after colliders?

Choosing a cloud hosting partner with confidence

If you thought the world of big physics was drawing to a close with the confirmation that yes, the Higgs boson appears to be a boson and appears to be a Higgs, think again: CERN's boffins, along with thinkers of deep thoughts from École Polytechnique, Southampton University's Optoelectronics Centre and Jena are imagining what the world's next generation of particle accelerators may look like.

The answer might be “a very, very bright laser”, and to look at the feasibility of this, they've joined together with a dozen other laboratories worldwide to form the ICAN – the International Coherent Amplification Network – consortium.

What they hope to establish is whether lasers could produce both the huge energy inputs a post-LHC particle physics would need, at the same time as getting the high pulse repetition rates required.

However, rather than a single laser with enough power to deliver an Earth-shattering kaboom – which in a particle acceleration context would then have to be recharged thousands of times each second – ICAN's idea is to slave together a large number of far smaller lasers.

Scattering the laser sources to the four winds – apologies, massively distributing the laser sources – allows the power to be similarly distributed, which at the megawatt scale is easier than in a single device.

In the context of particle physics, a laser could impart enough energy to accelerate particles to high energy over distances “measured in centimetres rather than kilometres as is the case today using conventional technology,” said consortium leader, École's Gérard Mourou.

Doing without the huge machines and cost of an LHC “is of critical importance for the future of high-energy physics”, he added.

According to the University of Southampton's Dr Bill Brocklesby, recent proof-of-concept work has demonstrated that the disparate lasers can be controlled “within a fraction of a wavelength … thousands of fibres can be controlled to provide a laser output powerful enough to accelerate electrons to energies of several GeV at 10 kHz repetition rate.”

Their work has been published in Nature Photonics (abstract here). ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Canberra drone team dances a samba in Outback Challenge
CSIRO's 'missing bushwalker' found and watered
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.