Feeds

Memory vendors pile on '3D' stacking standard

HMC 1.0 in the wild

Security for virtualized datacentres

More memory responding faster in a smaller footprint: that's what chip vendors are hoping to achieve with the announcement of the HMC 1.0 specification.

The standard, available here, sets down the specs for memory chip stacking using through-silicon vias (TSVs). In other words: individual memory dies, stacked vertically on top of a controller, with connectivity through the silicon.

It is, in other words, a combination of manufacturing process and logical organisation. The logic is necessary: merely stacking memory locations would merely create a large physical memory with an I/O bottleneck.

As the HMC concept diagram below illustrates, portions of each layer would be organised as positions, grouped into vaults, with the base layer handling the organisational logic (irrespective of how individual manufacturers handle physical organisation).

HMC 1.0 concept diagram

HMC 1.0 logical organisation. Source: Hybrid Memory Consortium

That logical organisation – as well as boring details like device pinout – that's important to the initiative, since it means devices should be interoperable regardless of the on-chip design or manufacturing approach the vendor takes.

The specification claims up to 15 Gbps SerDes I/O, supporting multiple 16-lane full-duplex links and, according to the HMC Consortium, provides “more than 15 times” the performance of today's DDR3 modules at “70 percent less energy” than DDR3 DRAM technology.

That performance, the consortium says, is important to stop memory becoming a worse performance bottleneck than it already is, in an age where (for example) GPU-based supercomputers are handling truly stupendous data sets.

HMC 1.0 is supported by founders Samsung and Micron, along with HP, ARM and Hynix.

The publication of HMC 1.0 will also pressure microelectronics standard-setter Jedec to accelerate its TSV and 3D memory efforts. It has an addendum to the DDR4 standard in the works (currently describing the initiative as “making good progress”), and has published its Wide I/O JESD229 standard.

Foundries, however, aren't waiting to see which standard wins: they're working hard to position their 3D capabilities whichever way the die falls. Globalfoundries announced its first functional 20nm TSV chips out of its New York facility, while IBM, Samsung, Tezzaron, TSMC and UMC are all working on TSV capabilities.

According to Chip Design magazine, volume shipment of 3D devices won't happen until 2014 or 2015. At this point, foundries are still competing to solve the fabrication challenge – for example, settling on which manufacturing process is going to deliver reliability, yield and low production cost.

Globalfoundry's approach is to insert the TSVs between the “front end of line” and “back end of line” processes (FEOL and BEOL respectively), so that the vias themselves aren't exposed to high processing temperatures; this allows boring old copper to be used as the via. Tezzaron, on the other hand, uses tungsten for the vias – more expensive than copper, but it claims that the material minimises thermal mismatch. ®

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
Let it go, Steve: Ballmer bans iPads from his LA Clippers b-ball team
Can you imagine the scene? 'Hey guys, it's your new owner – WTF is that on your desk?'
How the FLAC do I tell MP3s from lossless audio?
Can you hear the difference? Can anyone?
iPAD-FONDLING fanboi sparks SECURITY ALERT at Sydney airport
Breaches screening rules cos Apple SCREEN ROOLZ, ok?
Apple's new iPhone 6 vulnerable to last year's TouchID fingerprint hack
But unsophisticated thieves need not attempt this trick
The British Museum plonks digital bricks on world of Minecraft
Institution confirms it's cool with joining the blocky universe
Turn OFF your phone or WE'LL ALL DI... live? Europe OKs mobes, tabs non-stop on flights
Airlines given green light to allow gate-to-gate jibber-jabber
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.