Feeds

Swiss boffins unleash power of graphene on flash mem

Chow down on tasty molybdenite sandwich

Beginner's guide to SSL certificates

A Swiss government research lab has reinvented flash memory using graphene and molybdenite in a way that should be faster, scale smaller, use less energy and yet more flexible than boring old NAND.

Molybdenite is MoS2, molybdenum disulfide, which is similar to graphite and also has a lubricating effect. Atomically it is a layer of molybdenum atoms between top and bottom layers of sulfide atoms. It is a semiconductor and can be used to create transistors.

Molybdenite

Molybdenite

Graphene is a form of pure carbon in which the atoms are ordered in a hexagonal layer, a honeycomb crystal lattice, one atom thick. There is a substance called flake graphite which is made from multiple graphene sheets. Graphene has high electrical conductivity, and high carrier mobility and can be used as a channel in a field-effect transistor.

Graphene

Graphene's lattice atomic ordering

Researchers in the Laboratory of Nanometer Electronics and Structures (LANES) at the École Polytechnique Fédérale de Lausanne (EPFL) have come up with a way of reinventing flash technology using a graphene and molybdenite sandwich and field-effect transistor geometry. The filing is a single layer of MoS2 and the top and bottom layers are graphene, the bottom one being a single layer. This is thinner, the boffins say, than an existing NAND cell.

MOS2 Graphene non-volatile memory cell

MoS2 Graphene non-volatile memory cell

Head federal boffin Andras Kis, the author of the study in the ACS Nano journal (pdf) and director of LANES, said:

"For our memory model, we combined the unique electronic properties of MoS2 with graphene's amazing conductivity."

EPFL says Molybdenite switches between on and off states quite easily, making it power-efficient. So the stuff switches state when powered but "forgets" it when the power is off - while the top 4 - 5 layers of graphene are said to store the last state when powered off; it is a charge-trapping layer.

Keeping it simple, Kis said:

"Combining these two materials enabled us to make great progress in miniaturisation, and also using these transistors we can make flexible nanoelectronic devices."

The prospect seen by the EPFL lab boys is of very much smaller and more power-efficient non-volatile memory that gets us out of the NAND scaling trap.

Unfortunately the prospect from the NAND fab operators is of combining DRAM and NAND attributes in a new generation of memory devices using technologies like Phase-Change Memory (PCM), IBM's Racetrack, and various varieties of Resistive (ReRAM) such as HP's Memristor. By the time EPFL's thin celled NAND substitute is ready to move from lab to foundry there might be no general need for it all, unless it has properties that render PCB, ReRAM and/or Racetrack redundant in general or for specific applications needing - for example - the new cell's flexibility. ®

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
IT crisis looming: 'What if AWS goes pop, runs out of cash?'
Public IaaS... something's gotta give - and it may be AWS
Linux? Bah! Red Hat has its eye on the CLOUD – and it wants to own it
CEO says it will be 'undisputed leader' in enterprise cloud tech
BT claims almost-gigabit connections over COPPER WIRE
Just need to bring the fibre box within 19m ...
Oracle SHELLSHOCKER - data titan lists unpatchables
Database kingpin lists 32 products that can't be patched (yet) as GNU fixes second vuln
Ello? ello? ello?: Facebook challenger in DDoS KNOCKOUT
Gets back up again after half an hour though
Hey, what's a STORAGE company doing working on Internet-of-Cars?
Boo - it's not a terabyte car, it's just predictive maintenance and that
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.