Feeds

Swiss boffins unleash power of graphene on flash mem

Chow down on tasty molybdenite sandwich

Intelligent flash storage arrays

A Swiss government research lab has reinvented flash memory using graphene and molybdenite in a way that should be faster, scale smaller, use less energy and yet more flexible than boring old NAND.

Molybdenite is MoS2, molybdenum disulfide, which is similar to graphite and also has a lubricating effect. Atomically it is a layer of molybdenum atoms between top and bottom layers of sulfide atoms. It is a semiconductor and can be used to create transistors.

Molybdenite

Molybdenite

Graphene is a form of pure carbon in which the atoms are ordered in a hexagonal layer, a honeycomb crystal lattice, one atom thick. There is a substance called flake graphite which is made from multiple graphene sheets. Graphene has high electrical conductivity, and high carrier mobility and can be used as a channel in a field-effect transistor.

Graphene

Graphene's lattice atomic ordering

Researchers in the Laboratory of Nanometer Electronics and Structures (LANES) at the École Polytechnique Fédérale de Lausanne (EPFL) have come up with a way of reinventing flash technology using a graphene and molybdenite sandwich and field-effect transistor geometry. The filing is a single layer of MoS2 and the top and bottom layers are graphene, the bottom one being a single layer. This is thinner, the boffins say, than an existing NAND cell.

MOS2 Graphene non-volatile memory cell

MoS2 Graphene non-volatile memory cell

Head federal boffin Andras Kis, the author of the study in the ACS Nano journal (pdf) and director of LANES, said:

"For our memory model, we combined the unique electronic properties of MoS2 with graphene's amazing conductivity."

EPFL says Molybdenite switches between on and off states quite easily, making it power-efficient. So the stuff switches state when powered but "forgets" it when the power is off - while the top 4 - 5 layers of graphene are said to store the last state when powered off; it is a charge-trapping layer.

Keeping it simple, Kis said:

"Combining these two materials enabled us to make great progress in miniaturisation, and also using these transistors we can make flexible nanoelectronic devices."

The prospect seen by the EPFL lab boys is of very much smaller and more power-efficient non-volatile memory that gets us out of the NAND scaling trap.

Unfortunately the prospect from the NAND fab operators is of combining DRAM and NAND attributes in a new generation of memory devices using technologies like Phase-Change Memory (PCM), IBM's Racetrack, and various varieties of Resistive (ReRAM) such as HP's Memristor. By the time EPFL's thin celled NAND substitute is ready to move from lab to foundry there might be no general need for it all, unless it has properties that render PCB, ReRAM and/or Racetrack redundant in general or for specific applications needing - for example - the new cell's flexibility. ®

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
The cloud that goes puff: Seagate Central home NAS woes
4TB of home storage is great, until you wake up to a dead device
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
You think the CLOUD's insecure? It's BETTER than UK.GOV's DATA CENTRES
We don't even know where some of them ARE – Maude
Intel offers ingenious piece of 10TB 3D NAND chippery
The race for next generation flash capacity now on
Want to STUFF Facebook with blatant ADVERTISING? Fine! But you must PAY
Pony up or push off, Zuck tells social marketeers
Oi, Europe! Tell US feds to GTFO of our servers, say Microsoft and pals
By writing a really angry letter about how it's harming our cloud business, ta
SAVE ME, NASA system builder, from my DEAD WORKSTATION
Anal-retentive hardware nerd in paws-on workstation crisis
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Internet Security Threat Report 2014
An overview and analysis of the year in global threat activity: identify, analyze, and provide commentary on emerging trends in the dynamic threat landscape.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.