Feeds

Micro-drum acts as quantum memory

NIST puts qubits in a spin

Choosing a cloud hosting partner with confidence

Memory is one of the difficult bits of quantum computing. For example, while the polarisation of a photon encodes a quantum state, it's very difficult to get photons to stay where they're put.

A group of researchers from JILA – a joint institute between the University of Colorado and the National Institute of Standards and Technology – has demonstrated a different approach to capturing quantum states in memory: they're using a microscopic spinning platter to do the job.

At the moment, it's not very accurate: the spinning drum captured the vertical and horizontal positions of a microwave signal at a point in time (the quantum state they were trying to capture), but that state could only be retrieved with 65 percent accuracy.

The micro-drum was created by NIST in 2011. Because it's embedded in a resonant circuit, the drum is able to beat at different frequencies. That means the electrical energy in the microwaves can be captured as mechanical energy as a phonon (a unit of vibration).

NIST micro-drum

NIST's micro-drum and circuit (colorised image)

To get this interaction happening at the quantum level, the researchers had to cool the drum to its lowest-possible energy state, at which point it has less than one quantum of its own energy. The microwaves used to cool the drum to its ground state also transfer information about the their quantum states to the drum, in the form of a temporary state beating at the received frequency.

The researchers also found a way to turn the microwave-drum interaction on and off, based on the intensity of the microwave tone.

If the researchers can improve the performance of the quantum memory, they'll end up with something that's compatible – both in size and in the fabrication techniques used – with devices that NIST uses as qubits.

NIST says in practice, the micro-drum is somewhat like the delay-line memory used in early computers like NIST's SEAC of the 1950s, in which computation values were temporarily stored as acoustic waves travelling down a column of a fluid like mercury.

The NIST research is to published in Nature and its announcement is here. ®

Bootnote: The researchers note that the drum is actually a quasi-quantum memory: its beat is a classical system, but in a quantum-noisy environment. This author isn't physicist enough to completely understand the distinction. ®

Choosing a cloud hosting partner with confidence

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
prev story

Whitepapers

10 ways wire data helps conquer IT complexity
IT teams can automatically detect problems across the IT environment, spot data theft, select unique pieces of transaction payloads to send to a data source, and more.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
10 threats to successful enterprise endpoint backup
10 threats to a successful backup including issues with BYOD, slow backups and ineffective security.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Website security in corporate America
Find out how you rank among other IT managers testing your website's vulnerabilities.