The Register® — Biting the hand that feeds IT

Feeds

Self-healing chips survive repeated LASER BLASTS

Terminator tech keeps running despite multiple faults

Modern high-speed integrated circuits can be fragile things. Even a single fault can often render them completely inoperable. But a team of researchers at the California Institute of Technology (Caltech) says it has developed an "immune system" for chips that can allow circuits to route around problems and keep working in the face of failures – even ones as catastrophic as being blasted with a high-energy laser.

The team demonstrated the technology using a millimeter-wave power amplifier – a type of cutting-edge circuit used for next-generation communications, imaging, and sensing applications.

Even after they zapped the chip repeatedly with a laser, utterly destroying some of its components, the self-healing system was able to detect the faults, route around them, and continue to function at near-optimal efficiency.

"It was incredible the first time the system kicked in and healed itself. It felt like we were witnessing the next step in the evolution of integrated circuits," said Ali Hajimiri, a professor of electrical engineering at Caltech.

The system works by equipping the power amplifier with a collection of on-chip sensors that monitor current, voltage, power, and temperature. The data from these low-power sensors is then fed into a custom on-chip ASIC that controls the self-healing process.

  Diagram demonstrating Caltech's self-healing chip technology  

Caltech's self-healing chips take a licking and keep on ticking – even at millimeter-wave frequencies

The ASIC itself is a simple, modular global state machine that can run a variety of self-healing algorithms. In the current implementation, two separate algorithms sift through 262,144 possible states to find the optimum solution for the amplifier's current operating condition. The ASIC then reroutes the circuit accordingly, using on-chip actuators.

"We don't know all of the different things that might go wrong, and we don't need to," said graduate student Steven Bowers of Hajimiri's lab at Caltech. "We have designed the system in a general enough way that it finds the optimum state for all of the actuators in any situation without external intervention."

In the boffins' experiments, the chip could self-heal in a maximum time of 0.8 seconds with the ASIC running at a clock speed of 50MHz, and when the clock was cranked up to 200MHz, healing scaled cleanly, taking place in a maximum of 0.2 seconds.

And while it's the rare circuit that will need to survive being caught in a high-energy laser crossfire – for now, at least – the researchers said self-healing technology is perfectly applicable to much more mundane kinds of faults.

Fabrication process variations, environmental factors such as temperature and load mismatch, battery power fluctuations, and normal aging effects can all cause integrated circuits to behave in suboptimal ways, and self-healing can be used to correct for all of the above.

The Caltech team compared 20 different chips and found that chips equipped with self-healing technologies performed more predictably and reproducibly than those that couldn't self-heal.

The team also claim that the self-healing chips consume half as much power as the non-healers due to the fact that the healing ASIC searches out the circuitry route that provides optimal power-saving. Exactly how that real-time route-finding can be more efficient than preproduction optimization modeling on undamaged chippery, the Caltechies don't explain – at least not in a clear enough summary that we could get our heads around.

Hajimiri said the fact that Caltech was able to make their self-healing technology work with as advanced a circuit as a millimeter-wave power amplifier demonstrated that the system could eventually be extended to work on any kind of electronic system.

"It is truly a shift in the way we view circuits and their ability to operate independently. They can now both diagnose and fix their own problems without any human intervention, moving one step closer to indestructible circuits," Hajimiri said.

The Caltech team's research was funded by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory, and their full findings are published in the March 2013 issue of IEEE Transactions on Microwave Theory and Techniques. ®

Re: Interesting, but...

Nano-assemblers create minute quantities of duct-tape.

8
0
Anonymous Coward

Questionable assumptions...

This assumes a chip is homogeneous in design and the loss of any given unit would fine. So redundant units would probably be necessary in many cases. At which point one wonders if it would be better to just have redundant chips and the self healing ASIC(s) in separate chips at mission critical areas.

As others pointed out the self healing ASIC is a single point of failure. Perhaps it would be better to have this ASIC's functionality spread throughout the chip. But again this would lead to considerable complexity. Chip size, heat, and manufacturing defects would probably rise. i.e. bigger target, more cooling, but at least the chip could 'fix' it's own defects right?

This isn't really healing at all. It's just internal failover whose premise works best on simple chip designs. As I suggested before an external failover mechanism is probably more ideal for more complex setups.

What we need is real self healing via nanomachines and temporary failover. Don't see that being around the corner any time soon. Or IC's made out of organics.

4
0

Space exploration was the first thought that came to mind. Could be very useful in such a hostile environment.

4
0
Anonymous Coward

Re: Ivor Catt should get a mention

Iv'a dog, so what? :-)

3
0

Marketing people working overtime

The chip doesn't heal itself, it's just more fault tolerant.

2
0

More from The Register

Fanbois vs fandroids: Punters display 'tribal loyalty'
Buying a new mobe? You'll stick with the same maker - survey
iPhone 5 totters at the top as Samsung thrusts up UK mobe chart
But older Apples are still holding their own
Google to Glass devs: 'Duh! Go ahead, hack your headset'
'We intentionally left the device unlocked'
Japan's naughty nurses scam free meals with mobile games
Hungry women trick unsuspecting otaku into paying for grub
 breaking news
Turn off the mic: Nokia gets injunction on 'key' HTC One component
Dutch court stops Taiwanese firm from using microphones
Next Xbox to be called ‘Xbox Infinity’... er... ‘Xbox’
We don’t know. Maybe Microsoft doesn’t (yet) either
Barnes & Noble bungs Raspberry Pi-priced Nook on shelves
That makes the cheap-as-chips e-reader cool now, right?
Sord drawn: The story of the M5 micro
The 1983 Japanese home computer that tried to cut it in the UK