MIT boffin teases space-station probe's DARK MATTER DISCOVERY

Just double-checking the numbers, says Nobel-prize winner

Securing Web Applications Made Simple and Scalable

A top astroboffin has hinted that an upcoming paper will reveal a major breakthrough in dark matter research.

Alpha Magnetic Spectrometer installed on the S3 truss on ISS

The AMS installed on the S3 truss of the ISS

MIT scientist and Nobel Laureate in Physics Samuel Ting told reporters at the American Association for the Advancement of Science (AAAS) that the first results from the costly Alpha Magnetic Spectrometer (AMS) are ready.

The spectrometer is a particle collector mounted on the outside of the International Space Station to comb the void for high-energy particles or cosmic rays. Ting heads up the AMS project, whose experiments are among the most expensive ever conducted in space.

Ting wouldn't say exactly what the AMS has come up with, but he said the results will concern the mystery of dark matter, the invisible material that in theory makes up a significant portion of the universe: about five per cent is said to be visible atomic matter, and the rest is a bit of a mystery.

"We've waited 18 years to write this paper, and we're now making the final check," Ting was quoted as saying by the BBC and others.

"I would imagine in two or three weeks, we should be able to make an announcement.

"We have six analysis groups to analyse the same results. Everybody has their own interpretations, and we're now making sure everyone agrees with each other. And this is pretty much done now."

Boffins theorised that dark matter is made up of weakly interacting massive particles, colourfully known as WIMPs, which interact only through weak nuclear force and gravity, and are relatively massive and cold. Simply put, the WIMPs don't interact electromagnetically with normal matter and thus are dark and invisible.

Three-dimensional distribution of dark matter in the Universe

3D distribution of dark matter in the Universe

WIMPs also have their own antimatter partner particles. It is understood when matter and antimatter bits meet up, they destroy each other; in the case of WIMPs, it is possible they leave behind a pair of resultant particles: an electron and a positron (an antielectron).

The AMS can detect the electrons and positrons produced by, what's believed to be, these dark matter annihilations. The $2bn experiment was installed on the Earth-orbiting space station in May 2011 and has so far detected 25 billion particle events, including about eight billion electrons and positrons. The results could show how many of each were found and what their energies were.

The number and spread of positrons are what will point to the detection of dark matter. Electrons are already all around us, but there are fewer known processes that give the universe positrons. Also, scientists expect positrons from dark matter to be spread evenly through space, not shooting through space as they might from a star explosion.

AMS is not the only experiment out there trying to find dark matter: there are also a number of investigations going on at the Large Hadron Collider, which could verify any AMS findings. Michael Turner, of the Kavli Institute for Cosmological Physics at the University of Chicago, said that this could be the decade of dark matter.

"Theory says that this particle might weigh somewhere between 30, 40 and 300 times what the proton does, so somewhere between 30 and maybe 1,000 GeV," he told the BBC.

"The LHC can produce particles of that mass. Sam Ting's AMS detector can see particles of that mass annihilating, and then the detectors deep underground are also sensitive to particles of this mass.

"If we get very lucky, if Santa answers our wish-list, we could get a triple signature of the dark matter particle, by seeing the annihilations, by directly detecting it, by producing it at the LHC - all three of these methods are sensitive across the same mass range." ®

HP ProLiant Gen8: Integrated lifecycle automation

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
ALIEN BODY FOUND ON MARS: Curiosity rover snaps extraterrestrial
And NASA kept evidence to itself for over a month
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
NASA: ALIENS and NEW EARTHS will be ours inside 20 years
ETs, habitable planets will soon pop up with our new 'scopes
prev story


Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.
Mobile application security vulnerability report
The alarming realities regarding the sheer number of applications vulnerable to attack, and the most common and easily addressable vulnerability errors.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.