Feeds

Permafrost melt to boost atmospheric CO2 faster than thought

The more CO2, the more global warming; the more global warming, the more CO2

Intelligent flash storage arrays

A new study has shown that melting Arctic permafrost will "release climate-warming carbon dioxide gas into the atmosphere much faster than previously thought," the University of Michigan warns.

"In this research, we provide the first evidence that the respiration of previously frozen soil carbon will be amplified by reactions with sunlight and their effects on bacteria," said Rose Cory of the University of North Carolina when announcing the publication of her team's research in a paper published in the Proceedings of the National academy of Science (PNAS).

Cory, along with George Kling of the University of Michigan and their research colleagues, studied "thermokarst failures" – places where melting permafrost has exposed carbon-rich soil – in Arctic Alaska to discover how exposure to sunlight affected the conversion of carbon buried in the previously frozen soil into atmosphere-warming CO2.

The answer: a lot. In boffinary terms, as the paper explains, "Our results suggest that photostimulation will rapidly (days to months) increase conversion to CO2 by an additional 40 per cent or more in thawed and released C compared with that remaining in the dark."

Sunlight's UV rays, it turns out, not only degrade organic soil carbon into CO2, but also alters the carbon into a form that makes it yummy to bacteria. When bacteria feed upon it, they exhale CO2 – well, "respire" would be more correct – thus releasing more of that earth-warming gas into the atmosphere.

The increase of atmospheric of CO2, of course, creates a positive feedback loop: the more heat-trapping CO2 in the atmosphere, the more the planet heats; the more the planet heats, the more permafrost collapses into thermokarst failures; the more thermokarst failures, the more exposed carbon that sunlight can transform into CO2 – which is added to the atmosphere, and 'round and 'round we go.

According to one recent model, the contribution of melting permafrost to atmospheric CO2 would likely continue even if fossil-fuel CO2 contributions suddenly ceased – which, of course, is vanishingly unlikely – due to the aforementioned positive feedback loop.

Cory and Kling's key finding is the role of sunlight in the permafrost cycle. "Until now," Kling said, "we didn't really know how reactive this ancient permafrost carbon would be – whether it would be converted into heat-trapping gases quickly or not."

Now we know. ®

Providing a secure and efficient Helpdesk

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
Relive the death of Earth over and over again in Extinction Game
Apocalypse now, and tomorrow, and the next day, and the day after that ...
prev story

Whitepapers

A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.