Feeds

Blobs that swarm spark ‘it’s alive’ hypegasm

The mathematics of flocking

Top three mobile application threats

A group of scientists led by New York University’s Jérémie Palacci has demonstrated the swarming behaviour of clickbait headline-writers by showing off inanimate objects that swarm a little like living cells.

It’s not even close to life – as Palacci himself tells New Scientist, “even though the particles have no social interaction or intelligence, you can exhibit collective behaviour with no biology involved”.

What Palacci thought he was demonstrating was that the inanimate objects – microscopic plastic spheres containing hematite, which makes them both magnetic and, in the right conditions (suspended in hydrogen peroxide which, exposed to light, catalyses the solution and is shoved around by osmotic forces) clump together to form swarms. What he actually demonstrated, however, was the swarming behaviour of the media, with world+dog seizing on this quote: “[we] show that with a simple, synthetic active system, we can reproduce some features of living systems.”

The NYU media release, here, is much more prosaic, as can be seen from the opening paragraphs of the announcement:

"New York University physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight.

“The method offers the potential to enhance the design of a range of industrial products, including the architecture of electronics.”

What’s going on here? The blue light causes the colloids to react with, and break down, the hydrogen peroxide near them. The lower concentration sucks in more hydrogen peroxide, buffeting the spheres – and the new hydrogen peroxide is catalysed, so the process repeats. And because the blobs contain iron, the swarms can be steered with magnetic fields.

“If there are enough spheres in the same place they will cluster together to form shapes of symmetrically arranged particles, which the team call crystals,” New Scientist notes.

The important bit – at least from the physicist’s point of view – is not the “frankenparticle” (thanks for that, New Scientist) video (below), but that they can boil the swarming behaviour down to mathematics.

“Our experiments are quantitatively described by simple numerical simulations,” as is noted in the abstract in their paper in Science.

The material science implications are interesting: “By better understanding driven colloidal self-organization, scientists have the potential to harness these particles and create new and enhanced materials”, the university’s announcement notes - and that could include contributing towards the development of self-healing materials.

And, looking at other swarming behaviours – the ones that occur in living systems, such as birds or fish – Palacci wonders if these could also be reduced to simple maths. “From a physicist's point of view, if many different systems behave in the same way there must be an underlying physical rule”. ®

3 Big data security analytics techniques

More from The Register

next story
Fancy joining Reg hack on quid-a-day challenge?
Recruiting now for charity starvation diet
Red-faced LOHAN team 'fesses up in blown SPEARS fuse fiasco
Standing in the corner, big pointy 'D' hats
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
Opportunity selfie: Martian winds have given the spunky ol' rover a spring cleaning
Power levels up 70 per cent as the rover keeps on truckin'
KILLER ROBOTS, DNA TAMPERING and PEEPING CYBORGS: the future looks bright!
Americans optimistic about technology despite being afraid of EVERYTHING
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
prev story

Whitepapers

Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Top three mobile application threats
Learn about three of the top mobile application security threats facing businesses today and recommendations on how to mitigate the risk.
Combat fraud and increase customer satisfaction
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.