Feeds

Stanford super runs million-core calculation

'Sequoia' focuses its attention on fluid dynamics problem

HP ProLiant Gen8: Integrated lifecycle automation

Stanford University engineers are claiming a record for the year-old Sequoia supercomputer, after running up a calculation that used more than a million of the machine’s cores at once.

The work was conducted by the university’s Centre for Turbulence Research, seeking to get a model for supersonic jet noise that’s more sophisticated than “wow, that’s loud”. The predictive simulations the centre conducts contribute to designing quieter engines by providing input into components such as nozzle shape.

The trick is getting the models to run quickly enough: and it was the search for speed that led the researchers to get to work getting their code to run across so many cores in parallel.

Sequoia has more than 1. 5 million cores and 1.6 Petabytes of storage, which when it was first installed made it the world’s most powerful supercomputer. However, in normal use, that power is spread across a bunch of different workloads.

As Stanford’s announcement notes: “CFD [computational fluid dynamics] simulations test all aspects of a supercomputer. The waves propagating throughout the simulation require a carefully orchestrated balance between computation, memory and communication. Supercomputers like Sequoia divvy up the complex math into smaller parts so they can be computed simultaneously. The more cores you have, the faster and more complex the calculations can be.”

If anything’s wrong with any of the million bits of code running at once, the simulation is at best slowed down. The researchers first spent weeks “ironing out the wrinkles”, the university said, before kicking off the final simulation, starting with “full-system scaling” before finally watching the CFD simulation reach the million-core target.

The work, led by research associate Joseph Nichols, was described by the centre’s director Parviz Moin like this:

“Computational fluid dynamics (CFD) simulations, like the one Nichols solved, are incredibly complex. Only recently, with the advent of massive supercomputers boasting hundreds of thousands of computing cores, have engineers been able to model jet engines and the noise they produce with accuracy and speed.”

One of its outputs is shown below. Exhaust temperatures are shown in red, noise in blue, and the grey object at the left is a new nozzle design, with chevrons in the nozzle designed to reduce noise. ®

Stanford's jet-noise simulation needed a milliion cores

Image courtesy of the Center for Turbulence Research, Stanford University

Reducing security risks from open source software

More from The Register

next story
Sysadmin Day 2014: Quick, there's still time to get the beers in
He walked over the broken glass, killed the thugs... and er... reconnected the cables*
Amazon Reveals One Weird Trick: A Loss On Almost $20bn In Sales
Investors really hate it: Share price plunge as growth SLOWS in key AWS division
Auntie remains MYSTIFIED by that weekend BBC iPlayer and website outage
Still doing 'forensics' on the caching layer – Beeb digi wonk
SHOCK and AWS: The fall of Amazon's deflationary cloud
Just as Jeff Bezos did to books and CDs, Amazon's rivals are now doing to it
BlackBerry: Toss the server, mate... BES is in the CLOUD now
BlackBerry Enterprise Services takes aim at SMEs - but there's a catch
The triumph of VVOL: Everyone's jumping into bed with VMware
'Bandwagon'? Yes, we're on it and so what, say big dogs
Carbon tax repeal won't see data centre operators cut prices
Rackspace says electricity isn't a major cost, Equinix promises 'no levy'
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.