Feeds

Squillions of bytes in one cup of DNA

I/O is rubbish, but DNA will be around once the LTO standard is dust

Next gen security for virtualised datacentres

It’s not the first time that digital data has been encoded on DNA, but new research published today in Nature brings bio-storage a significant step closer to reality.

Scientists have previously demonstrated that DNA is viable as a digital storage medium – for example, Stanford University demonstrated last year that a bit written onto DNA could survive cell reproduction.

Both reading and writing DNA are error-prone, particularly if a DNA ‘letter’ repeats in the string, and it’s only possible to manufacture short strings of DNA at the moment. It’s these problems the researchers have worked to address.

In their paper, the researchers describe a technique to encode manufactured DNA to avoid code repetition.

As co-author Ewan Birney explains:

“We knew we needed to make a code using only short strings of DNA, and to do it in such a way that creating a run of the same letter would be impossible. So we figured, let's break up the code into lots of overlapping fragments going in both directions, with indexing information showing where each fragment belongs in the overall code, and make a coding scheme that doesn't allow repeats. That way, you would have to have the same error on four different fragments for it to fail – and that would be very rare.”

In his demonstration, Birney and fellow-researcher Nick Goldman, both of the EMBL-European Bioinformatics Institute, called on Agilent Technologies to help them encode a variety of content onto manufactured DNA: a jpg photo of the EMBL-EBI, a PDF of the Watson and Crick paper that first described DNA, a txt file containing all of Shakespeare’s sonnets, and an mp3 of Martin Luther King’s “I Have a Dream” speech.

All of this went onto manufactured DNA strings “as big as a speck of dust”, Agilent’s Emily Leproust said – meaning that a cupful of DNA would hold “a hundred million hours of high-definition video”.

While you won’t see DNA replacing the RAM in your computer, the researchers say its density and longevity – it can be decoded from creatures long-dead such as woolly mammoths – make it an ideal archival medium. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
Volcanic eruption in Iceland triggers CODE RED aviation warning
Lava-spitting Bárðarbunga prompts action from Met Office
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
LOHAN Kickstarter breaks NINETEEN THOUSAND of your EARTH POUNDS
That's right, OVER 9,000 beer tokens - and counting
Major cyber attack hits Norwegian oil industry
Statoil, the gas giant behind the Scandie social miracle, targeted
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.