Feeds

Bacterial quantum tricks could help solar power

Deep-sea microbe re-energises incoming light with molecular vibrations

Top 5 reasons to deploy VMware with Tegile

The ocean-dwelling Green Sulphur Bacteria should be interesting without outside help: it can, after all, live at depth of 2,000 meters and still harvest enough energy from light to survive and reproduce.

Now, researchers at Cambridge University have found that the little microbe has another interesting characteristic: its photosynthesis uses quantum physics to get the very most out of whatever light it finds.

Photosynthesis is already a quantum phenomenon, the University explains. The energy that a pigment like chlorophyll absorbs from photons is turned into an exciton and carried as a quantum wave to what they call the “reaction centre” of a pigment-protein complex (PPC), where the energy releases electrons necessary for the chemistry of photosynthesis.

Unlike a sun-drenched plant on the surface, the Green Sulphur Bacteria can’t afford to waste any of the energy it receives, so it has to prevent the excitons from dissipating. That’s what’s got the Cambridge scientists excited.

They’ve found a mechanism in the bacteria that captures some of the energy that might otherwise dissipate, by “reenergising it back to exciton level through molecular vibrations”. Its PPCs “ensure that every photon absorbed makes it to the structure’s reaction centre”.

The bacteria’s structure is able to preserve quantum coherence as the energy is transported, much more efficiently than happens in other systems. This, according to the University’s Dr Alex Chin, has important implications in solar cells, since their efficiency depends on their ability to capture energy from incoming photons.

“These biological systems can direct a quantum process, in this case energy transport, in astoundingly subtle and controlled ways – showing remarkable resistance to the aggressive, random background noise of biology and extreme environments,” he said.

“This new understanding of how to maintain coherence in excitons, and even regenerate it through molecular vibrations, provides a fascinating glimpse into the intricate design solutions – seemingly including quantum engineering – that nature has produced through evolution, and which could provide the inspiration for new types of room temperature quantum devices.”

The research is published in Nature, abstract here. ®

Beginner's guide to SSL certificates

More from The Register

next story
PORTAL TO ELSEWHERE scried in small galaxy far, far away
Supermassive black hole dominates titchy star formation
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.