Feeds

Bacterial quantum tricks could help solar power

Deep-sea microbe re-energises incoming light with molecular vibrations

SANS - Survey on application security programs

The ocean-dwelling Green Sulphur Bacteria should be interesting without outside help: it can, after all, live at depth of 2,000 meters and still harvest enough energy from light to survive and reproduce.

Now, researchers at Cambridge University have found that the little microbe has another interesting characteristic: its photosynthesis uses quantum physics to get the very most out of whatever light it finds.

Photosynthesis is already a quantum phenomenon, the University explains. The energy that a pigment like chlorophyll absorbs from photons is turned into an exciton and carried as a quantum wave to what they call the “reaction centre” of a pigment-protein complex (PPC), where the energy releases electrons necessary for the chemistry of photosynthesis.

Unlike a sun-drenched plant on the surface, the Green Sulphur Bacteria can’t afford to waste any of the energy it receives, so it has to prevent the excitons from dissipating. That’s what’s got the Cambridge scientists excited.

They’ve found a mechanism in the bacteria that captures some of the energy that might otherwise dissipate, by “reenergising it back to exciton level through molecular vibrations”. Its PPCs “ensure that every photon absorbed makes it to the structure’s reaction centre”.

The bacteria’s structure is able to preserve quantum coherence as the energy is transported, much more efficiently than happens in other systems. This, according to the University’s Dr Alex Chin, has important implications in solar cells, since their efficiency depends on their ability to capture energy from incoming photons.

“These biological systems can direct a quantum process, in this case energy transport, in astoundingly subtle and controlled ways – showing remarkable resistance to the aggressive, random background noise of biology and extreme environments,” he said.

“This new understanding of how to maintain coherence in excitons, and even regenerate it through molecular vibrations, provides a fascinating glimpse into the intricate design solutions – seemingly including quantum engineering – that nature has produced through evolution, and which could provide the inspiration for new types of room temperature quantum devices.”

The research is published in Nature, abstract here. ®

Top three mobile application threats

More from The Register

next story
Fancy joining Reg hack on quid-a-day challenge?
Recruiting now for charity starvation diet
Red-faced LOHAN team 'fesses up in blown SPEARS fuse fiasco
Standing in the corner, big pointy 'D' hats
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
LOHAN's Punch and Judy show relaunches Thursday
Weather looking good for second pop at test flights
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
Curiosity finds not-very-Australian-shaped rock on Mars
File under 'messianic pastries' and move on, people
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
Top Secret US payload launched into space successfully
Clandestine NRO spacecraft sets off on its unknown mission
prev story

Whitepapers

Designing a defence for mobile apps
In this whitepaper learn the various considerations for defending mobile applications; from the mobile application architecture itself to the myriad testing technologies needed to properly assess mobile applications risk.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.