Feeds

Bringing Iron Man to life: Exoskeletons, armour and jet packs

Power without the muscle of Banner and Captain America

Intelligent flash storage arrays

Arc reactor or hydrogen peroxide?

Kakalios estimates that Stark himself tips the scales at around 13 stone (81kg), which means that "his boot-thrusters would need to supply a constant downward force of over 330lb (equal to a mass of 150kg)" just for a fully suited-up Iron Man to do that enchanting wobbly hover thing he does. Duelling with supersonic fighter planes would require rather more than that.

“The only reason I didn’t give this movie a superhero physics A-grade was that... the amount of energy you would have to supply to continuously provide a downward thrust in order to maintain an upward force to counterbalance gravity is enormous,” Kakalios says.

So what about engines and power? In the film, Stark’s Arc Reactor is the engine's - and the weapons' - power source. Other engine options exist, but are limited. We have jet packs that work today but you don’t get to travel very far. One of today’s jet pack makers is Jet Pack International, which builds a hydrogen-peroxide-fuelled device capable of speeds of up to 80mph (128kmph). Problem is, it has a flight time of just 20 to 30 seconds and you'll only cover about a quarter of a mile (402m).

Next, there’s the control system. In the film, if Stark wants to fire his repulsor rays or transfer more power to the boot-jet thrusters, you never see him press a button or even give a voice commands. In the comics it’s explained away by saying that he has a cybernetic helmet that picks up his brainwaves and sends the signals to the suit – amazingly enough, this part is something that can be replicated in reality.

A number of scientists are working on cybernetic helmets.

One is Bin He of the Department of Biomedical Engineering at the University of Minnesota. He has built a helmet that, like Iron Man’s, enables the wearer to control a computer just by thinking. It works on the principle that the electrical currents generated the brain create electric and magnetic fields, which can be detected by external devices.

“It’s a device that detects the very minute electromagnetic waves that are generated when you think. It amplifies them, interprets them, and can send signals to a computer so that you could move a mouse cursor on a computer screen by just thinking,” says Kakalios.

The basic idea of electroencephalogram (EEG) has been around since 1924, but recent developments in signal processing and analysis have enabled scientists to extract much more detailed information about the personal computer we’re all carrying in our heads.

“The first goal of this research is to treat paralysis or to develop improved next-generation prosthetic devices, but if you asked me as a kid in the '60s which aspect of Iron Man would be the closest to reality in the 21th century I would have said the jet boots, or maybe the repulsor rays. I don’t think I would have said a mind-reading helmet,” Kakalios says.

The device requires a good deal of "training", in the same way that we have to teach voice recognition software how to handle our distinctive intonation. Nevertheless it points the way to a hands-free alternative to the mouse and keyboard. Perhaps one day we’ll all be thinking emails directly to one another - hopefully with hilarious results.

Time for the X1?

NASA, the Florida Institute for Human and Machine Cognition (IHMC) and engineers from Oceaneering Space Systems in Houston are collaborating on a robotic exoskeleton called X1.

The 57lb (26kg) device is wearable robot that can either aid or inhibit movement in leg joints. In the inhibit mode, the robotic device would be used as an in-space exercise machine to supply resistance against leg movement. The same technology could be used in reverse on the ground, potentially putting victims of paralysis back on their feet.

There is a huge overlap between the science community and the science fiction, not just because fans of one work in the other. Robert H Goddard, the man who built the first liquid-fuelled rocket, began his love affair with space travel after reading H G Wells’ War of the Worlds.

And while they may not be able to turn us green, it’ll be interesting to see how much further the world’s scientists can go in replicating super-hero fiction using scienctific fact. ®

Security for virtualized datacentres

More from The Register

next story
Boffins who stare at goats: I do believe they’re SHRINKING
Alpine chamois being squashed by global warming
What's that STINK? Rosetta probe shoves nose under comet's tail
Rotten eggs, horse dung and almonds – yuck
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
Kip Thorne explains how he created the black hole for Interstellar
Movie special effects project spawns academic papers on gravitational lensing
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.