Feeds

Information teleportation goes large-scale

Macro-scale strangeness at a scale visible to the human eye

The smart choice: opportunity from uncertainty

Quantum teleportation of information between quantum objects, like photons, is so well-understood that it’s almost routine. Now, an international physicists is claiming to have carried out the same trick in the macro universe.

If the experiment can be replicated, it will be an impressive trick. The scientists, led by Jian-Wei Pen of the University of Science and Technology in Hefei in China, say they’ve teleported quantum state information between ensembles of 100 million rubidium atoms. With a radius of 1 mm across, that’s large enough to be seen with the naked eye.

There’s a good reason for wanting to teleport state between macro objects: they stay where they’re put. Photons, on the other hand, are always on the road, so to speak (unless you apply tricks such as “slow light” to them). That makes a group of atoms much more useful than photons for applications like quantum memory.

The information teleported in the experiment was the spin state of the two rubidium atom ensembles, separated by a 150-meter optical cable (although only half a meter apart in the laboratory).

As described in Phys.org, “To do this, they first mapped the spin wave state of the first atomic ensemble to a propagating photon, and then performed Bell state measurements on that photon and a second photon that was already entangled with the spin wave state of the second atomic ensemble.”

“Once the two photons were projected into an (entangled) Bell state, the quantum information was teleported to the second atomic ensemble.”

The researchers claim an 88 percent success rate for observing the teleportation, with other excitations of the atoms – essentially background noise – limiting the performance of the setup. That success rate, however, is “four orders of magnitude” higher than for a parallel experiment they ran using trapped ions.

The storage lifetime of spin states in the ensembles Pen’s group used was 129 microseconds. The researchers hope to lift this to a more-usable 100 milliseconds, which would allow them to build networks of atomic ensembles transferring information using quantum teleportation.

The research group included scientists from the National Cheng Kung University in Taiwan and Germany’s University of Heidelberg. The work has been published in the Proceedings of the National Academy of Sciences (abstract here).

The Power of One Infographic

More from The Register

next story
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
Jurassic squawk: Dinos were Earth's early FEATHERED friends
Boffins research: Ancient dinos may all have had 'potential' fluff
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.