Feeds

Plasma boffins' POWERFUL wind now a key clue to fiery Sun

Astrophysical turbulence experienced in lab hotbox

Next gen security for virtualised datacentres

Boffins have attempted to recreate astrophysical turbulence in the laboratory, so they can study the force that forms stars, carries heat across galaxies and troubles the edge of the Earth's magnetosphere.

Using the Large Plasma Device at UCLA, physicists took high resolution images of turbulent plasma in the chamber and were able to test out current theories of what happens when plasma goes wild. They found that the models held good for the scenarios they tested.

Space turbulence is a force that regulates the formation of the stars throughout the galaxy and determines the radiation emitted from the super massive black hole at the center of our galaxy. It also makes the Sun's corona - the fiery haze that surrounds the Sun - up to 1,000 times hotter than the Sun's surface, reaching temperatures of a million degrees Celsius.

A solar prominence, credit NASA

A solar prominence erupts into the Sun's corona. Photo by NASA

Closer to Earth, turbulence caused by violent emissions of charged particles from the Sun creates solar-powered winds that disrupt satellite signals and affect weather on the planet.

The scientists wanted to test out if the modern theory of astrophysical turbulence held good in experiments. According to current theory, turbulent motions in space and astrophysical systems are governed by Alfven waves, which are traveling disturbances of the plasma and magnetic field. The scientists wanted to test what happens in nonlinear interactions between Alfven waves traveling up and down the magnetic field — such as two magnetic waves colliding to create a third wave. The resulting turbulence confirmed what researchers expected about plasma behaviour.

It is almost impossible to measure the effects of astrophysical plasma in space itself - the paper explains that only lab experiments can achieve the controlled conditions and allow scientists to take the high-resolution images necessary.

Toward Astrophysical Turbulence in the Laboratory is published in Physical Review Letters, the journal of the American Physical Society. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
Volcanic eruption in Iceland triggers CODE RED aviation warning
Lava-spitting Bárðarbunga prompts action from Met Office
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
Major cyber attack hits Norwegian oil industry
Statoil, the gas giant behind the Scandie social miracle, targeted
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.