Feeds

Plasma boffins' POWERFUL wind now a key clue to fiery Sun

Astrophysical turbulence experienced in lab hotbox

Build a business case: developing custom apps

Boffins have attempted to recreate astrophysical turbulence in the laboratory, so they can study the force that forms stars, carries heat across galaxies and troubles the edge of the Earth's magnetosphere.

Using the Large Plasma Device at UCLA, physicists took high resolution images of turbulent plasma in the chamber and were able to test out current theories of what happens when plasma goes wild. They found that the models held good for the scenarios they tested.

Space turbulence is a force that regulates the formation of the stars throughout the galaxy and determines the radiation emitted from the super massive black hole at the center of our galaxy. It also makes the Sun's corona - the fiery haze that surrounds the Sun - up to 1,000 times hotter than the Sun's surface, reaching temperatures of a million degrees Celsius.

A solar prominence, credit NASA

A solar prominence erupts into the Sun's corona. Photo by NASA

Closer to Earth, turbulence caused by violent emissions of charged particles from the Sun creates solar-powered winds that disrupt satellite signals and affect weather on the planet.

The scientists wanted to test out if the modern theory of astrophysical turbulence held good in experiments. According to current theory, turbulent motions in space and astrophysical systems are governed by Alfven waves, which are traveling disturbances of the plasma and magnetic field. The scientists wanted to test what happens in nonlinear interactions between Alfven waves traveling up and down the magnetic field — such as two magnetic waves colliding to create a third wave. The resulting turbulence confirmed what researchers expected about plasma behaviour.

It is almost impossible to measure the effects of astrophysical plasma in space itself - the paper explains that only lab experiments can achieve the controlled conditions and allow scientists to take the high-resolution images necessary.

Toward Astrophysical Turbulence in the Laboratory is published in Physical Review Letters, the journal of the American Physical Society. ®

Securing Web Applications Made Simple and Scalable

More from The Register

next story
Asteroid's SHOCK DINO KILLING SPREE just bad luck - boffins
Sauricide WASN'T inevitable, reckon scientists
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.