Feeds

Bio-integrated circuitry melds man and machine

Flexible circuitry mimics skin, brain, human tissue

Build a business case: developing custom apps

Flexibility is fine, but what about stretchability?

All well and good – but not good enough for bio-integrated electronics. "Think about your skin or your heart or your brain," Rogers said. "These are systems that not only flex, but they also stretch, in the sense that they undergo large strain deformations – and there's no thickness at which you can make silicon in this way that will make it stretchy.

Problem – but one solved by Rogers and his team by taking a page from that much-maligned musical instrument known more for "Lady of Spain" than for microelectronic elegance: the accordion.

The solution was to pre-stretch a silicone rubber substrate, bond the silicon to it, then relax the rubber. What you get is an accordion pleat–type of material – or, as Rogers put it, "it leads to a non-linear buckling instability and the creation of a wavy form of silicon."

The final trick that allowed the creation of circuitry on this stretchy, deformable, durable, bio-friendly substrate was to connect the device's small, discrete functional elements with traces constructed in snaky patterns that could bend and stretch without breaking.

Bio-integated electronics

A stretchable silicon-on-silicone substrate requires circuitry to also be able to stretch – hence the snaky traces

"It's all about mechanical engineering," Rogers said. "Instead of using a uniform sheet of silicon or integrated circuit, cut the system into an open spider-web mesh consisting of these very thin, narrow, filamentary serpentine structures, bond the whole thing onto a very low-modulus thin sheet of silicone rubber – maybe 50 kilopascals. And if you do all of that with care to the mechanics, guided by full 3D finite-element modeling simulations, then you can generate integrated circuits in this kind of heterogeneous integrated format that have stress-strain properties almost perfectly matched to the epidermis."

Got that? If not, here's the take-away: using his techniques, a device designer can create pliable, stretchable integrated circuits that can bond to human skin or tissue with no discomfort to the user.

Placing such as device on the skin is simple. The silicon-silicone circuit system is stuck onto a water-soluble plastic film as a mounting surface and placed onto the skin. The mounting surface is then washed away, and the device adheres to the surface merely by van de Waals forces. "No penetrating pins, no glue, no straps, no adhesive tapes," Rogers explained.

Of course, simply applying one of these devices to the skin won't make it permanent. Skin, after all, exfoliates on its own, with new cells constantly regenerating beneath the surface layer. Still, Rogers says that such a device should last about two weeks.

But since it's a fully functional circuit, and not merely, say, an electrode, it can do quite a bit of work during its lifetime, seeing that circuits could contain such devices as transistors, resistors, strain gauges and other sensors, photovoltaics for generating power, RF antennas, and other elements.

As one example of such a device's usage, Rogers suggested placing one upon a person's neck where it could perform electromycography (EMG), measuring the electrical signals of muscle-controlling motor neurons. You could then use the data from the EMG spectrogram, using pattern-matching algorithms to compare it with predetermined speech-pattern spectrograms, and create a user interface, provide control over a prosthesis, or build a speaking device for people with diseases of the trachea.

The user-interface capabilities of the neck-mounted EMG sensor were used by some of Rogers' students to control video games through speech, and an on-hand sensor was built to pilot a quadricopter with hand and fist movements.

Transient electronics

In addition to bio-integrated electronics, Rogers has developed 'transient electronics' – circuits that dissolve inside you

A more-serious example that Rogers provided was neonatal care. Currently, if a newborn is in a neonatal ICU, he or she is plugged into a welter of devices through a maze of electrodes. Using a bio-integrated device that was equipped with both sensors and RF capabilities, the level of invasiveness could be reduced significantly. ®

Bootnote

In addition to talking about bio-integrated devices, Rogers also discussed his team's work on what he calls transient electronics – devices that can be implanted, swallowed, or otherwise placed in a body, and which will then dissolve in a predetermined amount of time and be safely absorbed with no ill affects to the subject.

To demonstrate the safety of the silicon and magnesium devices that his group is working on, Rogers produced a edible Colpitts RF oscillator (FM transmitter) that he popped into his mouth and swallowed. "Tastes just like chicken," he told his IEDM audience.

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
China building SUPERSONIC SUBMARINE that travels in a BUBBLE
Shanghai to San Fran in two hours would be a trick, though
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.