Feeds

British boffins 3D print electrical sensors

Piezoresistive polymer means 3D printers could spit out working game controllers

Secure remote control for conventional and virtual desktops

Researchers at the University of Warwick and GKN Aerospace have developed a material that, when used in a 3D printer (3DP), makes it possible for the printed objects to include working sensors.

Detailed in a paper titled A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors (PDF), the researchers explain that objects printed by 3D printers are a grand way to make sure CAD work is progressing well, but also disappointingly inanimate and unready for integration with other components.

That makes 3DP printers useful for basic prototyping, but the researchers say they aspire to “meet the demands of entrepreneurs, designers and artists wishing to create ever more complex and high-tech products using 3DP technology”. Those types, the paper say, want to “move towards the incorporation of functional elements such as electronic sensors into 3D printed macroscale structures.”

The team says they’ve made that possible by developing a new material, which they dub ‘carbomorph’, that can do just that.

Carbomorph is based on Carbon Black filler, a product the paper says is an “amorphous form of carbon, produced from the incomplete combustion of heavy petroleum products” and which is “readily available and inexpensive”. Carbon Black is also conductive.

The team also got its hands on a “readily available modeling plastic” called “polymorph” and combined it with Carbon Black until they had a substance that was able to be 3D printed and still conducted electricity.

Better yet, the new material was also piezoresistive – its electrical resistance changes when squeezed.

To test that property, the team used “a triple-head BFB3000 purchased from Bits from Bytes Ltd” to create a track of carbomoprh, hooked it up to sensors feeding into an “arduino electronics prototyping platform for data capture through a potential divider to measure resistance.” When the track was flexed, the rig detected a change in its resistance.

That’s mighty handy because carbomorph is so plastic it can be formed into many shapes, allowing slots for sensors to be built in to products made from the material.

The paper goes on to describe a similar experiment with multiple carbomorph strips used to construct an “exo-glove” capable of detecting fingers flexing, and capacitive buttons.

The University’s announcement of the research even shows a gaming controller made of carbomorph, complete with working buttons awaiting only a tap from users’ fingers to send a signal into whatever electronics will turn the change of resistance into on-screen action.

3D printing of flex sensors in University of Warwick's carbomorph paper

3D printing of flex sensors. ai) the CAD design of flex sensor, aii) the printed flex sensor, aiii) the printed sensor

undergoing flexing,aiv) the resistance response of the sensor during flexing, bi) CAD design of the 3D printed ‘glove’,

bii) the printed ‘glove’,biii) the printed ‘glove’ before flexing, biv) the printed ‘glove’ during flexing and

bv) the resistance response of each finger during 5 flexings.

The paper concludes by saying the scientists think they’re on to something.

“The formulated material has enabled the rapid production of a range of functional electronic sensors using a simple, low-cost 3D printer. The sensors range from piezoresistive sensors able to sense mechanical flexing when either placed on an existing object or embedded inside a printed object, through to capacitive sensors printed as part of custom interface device or embedded inside a ‘smart’ vessel able to sense the presence and quantity of liquid inside.”

As ever, there’s a long way to go before one can nip down to a shop, bring home some carbomorph and print out anything useful, not least because the substance is tricky to work with.

Indeed, the first experiment detailed noted that the printed carbomorph track was wider than anticipated, “due to spreading resultant from the lower melt viscosity of the carbomorph compared to the standard printing materials.” ®

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
Nexus 7 fandroids tell of salty taste after sucking on Google's Lollipop
Web giant looking into why version 5.0 of Android is crippling older slabs
All aboard the Poo Bus! Ding ding, route Number Two departing
Only another three days of pooing and I can have a ride!
Heyyy! NICE e-bracelet you've got there ... SHAME if someone were to SUBPOENA it
Court pops open cans of worms and whup-ass in Fitbit case
Official: European members prefer to fondle Apple iPads
Only 7 of 50 parliamentarians plump for Samsung Galaxy S
Fujitsu CTO: We'll be 3D-printing tech execs in 15 years
Fleshy techie disses network neutrality, helmet-less motorcyclists
Space Commanders rebel as Elite:Dangerous kills offline mode
Frontier cops an epic kicking in its own forums ahead of December revival
The IT Crowd's internet in a box gets $240k of crowdcash for a cause
'Outernet' project proposes satellite-fuelled 'Lantern' WiFi library for remote areas
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Choosing a cloud hosting partner with confidence
Download Choosing a Cloud Hosting Provider with Confidence to learn more about cloud computing - the new opportunities and new security challenges.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.