Feeds

Big Bang bashing boffins ‘Big Bounce’ back to BIRTH OF TIME

The universe before inflation took hold

Secure remote control for conventional and virtual desktops

A group of Penn State physicists says the universe we now see could have arisen from a "Big Bounce" rather than a Big Bang.

The new work by Penn State, led by professor Abhay Ashtekar, director of the Institute for Gravitation and the Cosmos, proposes ways to apply quantum physics "further back in time than ever before – right back to the beginning," the university says in a release.

We have a pretty good idea of the large-scale structures of the universe when it was only a few hundred thousand years old. That comes from studying the fingerprint of the ancient universe that's visible in the cosmic microwave background radiation (CMB), which has been intensely mapped and studied since its discovery in 1964.

However, the CMB – which marked the "inflationary" period of the universe – poses its own much-argued mystery: why isn't it smooth? How did the "lumps" emerge? (And it's a good thing they did, by the way, since galaxies, stars, planets, and people are all a consequence of those lumps).

The nutshell of Ashtekar's proposal is this: if you can apply quantum physics to the structures of the very early universe, it could explain the structures we now see. And that's what Ashtekar's group believes it has done – it's created a paradigm that uses the emerging field of "quantum loop cosmology" to explain how quantum fluctuations might have created the pre-inflationary structures which, after the universe's inflationary phase, formed the kernels for the universe we know see.

In the period Penn State is looking at, the universe was dense. Very, very dense: where an atomic nucleus has a density of 1014 grams per cubic centimetre, the density of the ancient universe was a staggering 1094 grams per cubic centimetre.

That kind of "stuff" can't be described by the Einsteinian theories that now describe cosmology so well. As one of Ashtekar's collaborators, post-doctoral fellow Ivan Agullo, explains:

The inflationary paradigm enjoys remarkable success in explaining the observed features of the cosmic background radiation. Yet this model is incomplete. It retains the idea that the universe burst forth from nothing in a Big Bang, which naturally results from the inability of the paradigm's general-relativity physics to describe extreme quantum-mechanical situations.

One needs a quantum theory of gravity, like loop quantum cosmology, to go beyond Einstein in order to capture the true physics near the origin of the universe.

In fact, the early universe was so strange that even time would appear different if you could go there and survive the experience. Instead of the strict causality that rules the classical macro universe, the "quantum loop universe" would have been ruled by probabilities. It may even point to a "Big Bounce", in which the universe arises not from "nothing", but from that super-compressed mass that had a distinct history of its own.

It seems almost unimaginable, but those probabilities – the mere chance that in the transition from ultra-dense matter to the inflationary universe, a few quantum particles happened to be clustered rather than uniformly distributed – can, Ashtekar's group claims, explain today's universe.

The combination of the new "loop-quantum-origins" paradigm with quantum cosmology equations, they say, show that "fundamental fluctuations in the very nature of space at the moment of the Big Bounce evolve to become the seed-like structures seen in the cosmic microwave background."

Even better, they assert, their theories demonstrate good agreement with what's observed in the CMB. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Thought that last dinosaur was BIG? This one's bloody ENORMOUS
Weighed several adult elephants, contend boffins
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
India's MOM Mars mission makes final course correction
Mangalyaan probe will feel the burn of orbital insertion on September 24th
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
'Duck face' selfie in SPAAAACE: Rosetta's snap with bird comet
Probe prepares to make first landing on fast-moving rock
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Saudi Petroleum chooses Tegile storage solution
A storage solution that addresses company growth and performance for business-critical applications of caseware archive and search along with other key operational systems.
Security and trust: The backbone of doing business over the internet
Explores the current state of website security and the contributions Symantec is making to help organizations protect critical data and build trust with customers.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.