Feeds

LHC CMS yields unexpected 'new stuff'

What’s the ‘matter’? A color-glass condensate - maybe

Build a business case: developing custom apps

Is there any phrase in science more exciting than “that’s odd”? MIT researchers right now would probably say “no”, since they suspect that LHC collisions may have yielded a previously-unobserved state of matter.

The unusual particle patterns turned up in what was meant to be a “reference run” of the Compact Muon Solenoid experiment.

The stuff in question, a “color-glass condensate”, is suggested by the behaviour of particles after collisions between lead and protons in the CMS. The “that’s odd” aspect of the collisions is a correlation in the direction that pairs of particles fly away from the collision, even though there’s no way that particles can communicate their direction to each other.

As this paper on Arxiv, shortly to be published in Physical Review B, describes, some pairs of particles somehow “fly in the same direction even though it’s not clear how they can communicate their direction with each other”, as MIT physics professor Gunther Roland says in this release.

The result, identified in an analysis of two million lead-proton collisions, suggests that something else must be imparting direction to the particle pairs – and here’s where the color-glass condensate comes into the picture.

The theory of this exotic stuff was proposed by researchers at Brookhaven National Laboratory to explain similar correlations from the Relativistic Heavy Ion Collider presented in 2004.

At that time, the RHIC theory was disputed, so its proponents, Brookhaven senior scientist Raju Venugopalan (quoted by MIT) and his then student Kevin Dusling, will be watching this development with interest.

At relativistic speeds, matter compresses along its length; and in very high-energy states (such as in the LHC), an accelerated nucleus might spawn large numbers of gluons (the particles that hold quarks together). The effect of this could be to create a “wall” of flattened gluons, and entanglement between the gluons explains how particles created by the collision can “share” direction information.

“It was supposed to be sort of a reference run,” Roland said, “a run in which you can study background effects and then subtract them from the effects that you see in lead-lead collisions.”

About that name. “Color” refers to the property of ‘color’ in quarks and gluons – the type of charge they carry due to the strong force; “glass” is analogous with everyday glass, in which silica looks solid in short timescales, but in very long timescales can be observed to flow; and “condensate” refers to the very high density of gluons. ®

Securing Web Applications Made Simple and Scalable

More from The Register

next story
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
Jurassic squawk: Dinos were Earth's early FEATHERED friends
Boffins research: Ancient dinos may all have had 'potential' fluff
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.