Feeds

Glorious silicon globes could hold key to elusive PERFECT kilogram

El Reg drills into why we need an ultra-accurate mass

The smart choice: opportunity from uncertainty

From Russia with love: the perfect silicon spheres

The watt balance is not the only effort to modernise the kilogram: work is also underway using a method that employs the Avogadro constant, which is used to calculate the number of atoms in a substance. Thus, once one has worked out how many atoms should exist in a 1kg sphere of silicon-28 isotope, the balls can be manufactured and X-rays scanners used to ensure the correct number of atoms are present.

Production of the ultra-pure 93.6mm-diameter spheres began in 2004 in Russia using a centrifuge at the Central Design Bureau of Machine Building in St Petersburg.

Watt balances, though, are where the action is at: scientists are building balances at France's Laboratoire National de Métrologie et D'essais (LNE), China's National Institute of Metrology (NIM) and New Zealand's Measurement Standards Laboratory (MSL) in addition to the BIPM's very own balance and work in Switzerland and South Korea. NIST has also plans for a second-generation balance to be operational by 2020.

If the NPL and NIST machines can agree, or if the level of uncertainty narrowed, then their data will be assessed by a committee. Data from the Avogadro device will also be combined. At November's BIPM meeting teams from each group will present their work and field questions in an attempt to finally bring everything out into the open and scotch doubts.

Ian Robinson Watt Balance

Robinson with the second-generation watt balance he helped build

Professor David Inglis, watt balance group leader for Canada's institute, warned against more balances being powered up before the existing equipment reaches an accord.

"It's important we come to an early decision or else all the countries will want to get involved," Inglis told us. "If they get so involved that they feel they need to be contributing it will slow everything down."

He reckoned NIST and INMS should know by next summer how well improvements are progressing; meanwhile his next move is to measure a full kilogram and weigh different materials to validate the results next spring.

There is another theory that chasing a perfect Planck's constant is wrong and that the physicists working on the project are pushing too hard in the wrong direction. Robinson dismisses this idea.

"The choice of the Planck constant for defining mass in the new SI is a decision that, in my opinion, is independent of the watt balance and Avogadro arguments. I feel that it is the right decision because it has a number of advantages including the effect of unifying the SI by bringing the extremely precise quantum electrical units, which were somewhat outside the SI, into the heart of the SI," he said.

"I feel that the difference between NIST and INMS results will be resolved by careful checking of each apparatus and that process is already underway. In addition other countries are building watt balances, which will add to our knowledge."

The effort to break the kilogram from its original physical artefact has taken the best part of forty years, gobbled a lot of money, and could end in deadlock - all for a breakthrough the vast majority of the planet won't even notice. Not even devotees of BBC2's The Great British Bake Off, who've fully embraced digital kitchen scales, will benefit from the existence of a super-accurate kilogram.

Where it will make a difference is in national laboratories; institutions that rely on absolute accuracy and finely calibrated measuring equipment. The standard mass in Paris, an old-world lump of metal kept under three bell jars, is fickle and unpredictable - relatively speaking, of course.

BIPM principal research physicist emeritus Richard Davis said the rules surrounding the handling of the standard mass are slavishly adhered to for no clear purpose.

Eight steps to building an HP BladeSystem

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
MARS NEEDS OCEANS to support life - and so do exoplanets
Just being in the Goldilocks zone doesn't mean there'll be anyone to eat the porridge
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
prev story

Whitepapers

Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.