The Register® — Biting the hand that feeds IT

Feeds

Quantum crypto - with nothing more than STANDARD broadband fibre

Theoretical un-crackability cracked

Supercharge your infrastructure

Boffins have worked out how to run quantum cryptography systems over a standard broadband fibre in a development that brings theoretically unbreakable encryption closer to mainstream use.

Traditionally it has been necessary to use dedicated fibre to send the single photons (particles of light) that are required for Quantum Key Distribution (QKD). This has restricted any applications of quantum cryptography technology to specialist and small-scale systems in banks and high-level government, essentially because of the extra inconvenience and cost required in allocating a dedicated fibre strand for quantum key distribution.

However, a breakthrough from Toshiba’s Cambridge Research Laboratory makes it possible to use existing telecoms networks to distribute secret keys, potentially slashing the price of using quantum cryptography in the process.

Researchers from Toshiba teamed up with boffins at Cambridge University Engineering Department to successfully create a rig that allowed them to extract the very weak signals used for quantum cryptography from ordinary telecom fibres, which transmit regular data traffic at a different wavelength.

The Cambridge team achieved their breakthrough using a detector that is sensitive only for a very brief window (100 millionths of a micro-second) at the expected arrival time of the single photon, which carries signals related to a quantum keys. The ultra-high shutter-speed snapshot detector responds largely to just the single photon signals and is insensitive to the scattered light caused by the other data signals. This allows the weak single photon signals to be recovered from the fibre.

Using the technique, the Cambridge team successfully ran quantum cryptography systems over ordinary telecom fibres while simultaneously transmitting data at 1Gbps in both directions. They demonstrated a secure key rate over 500kbps for 50km of fibre, about 50,000 times higher than the previous best value for this fibre length. The breakthrough was reported in the scientific journal, Physical Review X, on Tuesday.

Scattered light caused by the data signals would normally contaminate and overwhelm the single photon signals if sent along the same fibre. The disparity in the intensity of the signals is illustrated by the fact that one bit of data is carried by over one million photons in normal fibre optic networks, but one bit relates to just one polarised photon in quantum key distribution systems. Getting around the noise contamination problem without falling back on a dedicated fibre for quantum key exchange is therefore a massive breakthrough.

Dr Andrew Shields, assistant managing director at Toshiba Research Europe, said: “The requirement of separate fibres has greatly restricted the applications of quantum cryptography in the past, as unused fibres are not always available for sending the single photons, and even when they are, can be prohibitively expensive. Now we have shown that the single photon and data signals can be sent using different wavelengths on the same fibre.” ®

Boffin-note

Quantum Key Distribution (QKD) offers a high-security key exchange system that is theoretically uncrackable but still subject to potential implementation flaws. Secrets keys for one time key-pads are transmitted with one photon encoding one bit.

It is secure because any attempt by an eavesdropper to intercept and measure the photons alters their encoding, thanks to fundamental principals of quantum physics. This means that eavesdropping on quantum keys can be detected. Compromised key exchanges can be abandoned and the process repeated until a theoretically unbreakable key is exchanged.

The Toshiba QKD system is based on one-way optical propagation and the BB84 "Alice and Bob (PDF)" cryptography protocol with decoy pulses.

5 ways to prepare your advertising infrastructure for disaster

Whitepapers

5 ways to prepare your advertising infrastructure for disaster
Being prepared allows your brand to greatly improve your advertising infrastructure performance and reliability that, in the end, will boost confidence in your brand.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Email delivery: Hate phishing emails? You'll love DMARC
DMARC has been created as a standard to help properly authenticate your sends and monitor and report phishers that are trying to send from your name..
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Email delivery: 4 steps to get more email to the inbox
This whitepaper lists some steps and information that will give you the best opportunity to achieve an amazing sender reputation.

More from The Register

next story
Chaos Computer Club: iPhone 5S finger-sniffer COMPROMISED
Anyone can touch your phone and make it give up its all
NSA in new SHOCK 'can see public data' SCANDAL!
What you say on Twitter doesn't stay on Twitter
Hundreds of hackers sought for new £500m UK cyber-bomber strike force
Britain must rm -rf its enemies or be rm -rf'ed, declares defence secretary
Would you hire a hacker to run your security? 'Yes' say Brit IT bosses
We don't have enough securo bods in the industry either, reckon gloomy BOFHs
UK's Get Safe Online? 'No one cares' - run the blockbuster ads instead
Something like Jack Bauer's 24 ... whatever it'll take to teach kids how to bat away hackers
Sweet murmuring Siri opens stalker vulnerability hole in iOS 7
'Siri, hand over my contacts and history now…'
London schoolboy cuffed for BIGGEST DDOS ATTACK IN HISTORY
Bet his parents wish he'd been playing computer games
RSA: That NSA crypto-algorithm we put in our products? Stop using that
Encryption key tool was dodgy in 2007, and still dodgy now
prev story