Feeds

What are quantum computers good for?

Forget cracking crypto, think modelling reality itself to help build a better one

SANS - Survey on application security programs

Applications of quantum computing

Why bother? Worldwide, a lot of research dollars are being poured into quantum computing, in spite of a widespread belief that it’s only application is to render today’s encryption algorithms useless.

What’s the point of spending research dollars on a theoretical construct of such limited application?

The idea that quantum computing is only good for large-number factoring is still widespread. But some of the standard tools of quantum computing are starting to chip away at this perception. Let’s look at two.

The Fourier Transform is one of the oldest: while the mathematics for representing a time-domain event in the frequency domain is well-understood, the more complex the wave you’re trying to analyse, the bigger the calculation. In certain settings a quantum computer is exponentially more efficient at performing Fourier Transforms than a classical computer.

This is very much a creature of the real world, spanning materials sciences, structural engineering, our understanding of waves, photonics, consumer electronics … the list goes on.

Another example is here: a quantum algorithm for solving linear equations (where you have a matrix and a known vector, and wish to compute an unknown vector). For some classes of linear equations, Harrow, Hassidim and Lloyd have demonstrated that a classical computer’s runtime will be exponentially greater than that of a quantum computer.

As we understand more about quantum algorithms, we’re learning more about the types of problems that quantum computers could be applied to. And as researcher Scott Aaronson describes in this blog post, it’s also becoming clear that one of the best applications for quantum computers is to help us simulate the quantum world. This post describes the limits of classical simulation, with the conjecture that even quantum computers based on linear optics are too complex to be simulated in a classical computer.

Simulating quantum systems is an application that today consumes a huge amount of the world’s supercomputer processor cycles – along with other big-science headliners like astrophysics, genetics, geoscience, materials science, meteorology, climate modelling and high-energy physics.

Why is so much effort expended on quantum simulation? Because that’s where the world begins. Quantum simulation helps us, for example, better understand what’s going on in the world of chemistry. That, in turn, leads to potential applications in materials science, genetics, and other disciplines.

In this Nature paper published last year, for example, European and Canadian researchers propose using quantum computers to (it sounds recursive) simulate the states available to … a quantum computer.

It’s neither silly nor trivial. As they explain in the abstract, the simulation is necessary so as to understand the equilibrium and static properties of the quantum system. But how many samples are needed for a researcher to be certain that they’ve fully characterized the quantum system – without making a “list of everything”?

Today, the problem is approached by sampling, using the Metropolis algorithm on a classical computer. The European/Canadian group propose an alteration to that algorithm that uses a quantum computer to obtain the samples.

If we can build them, quantum computers will help get the quantum universe to yield up more of its secrets – and the best way to prove we can build one is to build one! ®

The Register would like to acknowledge the generous assistance and collaboration of Associate Professor Michael Bremner of the Centre for Quantum Computation and Intelligent Systems at the University of Technology, Sydney, in preparing this article. All errors or omissions, however, are the author's.

3 Big data security analytics techniques

More from The Register

next story
Most Americans doubt Big Bang, not too sure about evolution, climate change – survey
Science no match for religion, politics, business interests
So, just how do you say 'the mutt's nuts' in French?
Vital linguistic question interrupts LOHAN spaceplane mission
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
LOHAN and the amazing technicolor spaceplane
Our Vulture 2 livery is wrapped, and it's les noix du mutt
Liftoff! SpaceX Falcon 9 lifts Dragon on third resupply mission to ISS
SpaceX snaps smartly into one-second launch window
STEALTHY NANOROBOTS dress up as viruses, prepare to sneak into YOUR BODY
Cloaking techniques nicked from viruses tackle roadblocks on way to medical frontier
prev story

Whitepapers

Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.
Combat fraud and increase customer satisfaction
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.