Feeds

Supersymmetry takes an arrow to the knee

Hiding places get narrower

Top three mobile application threats

Supersymmetry isn’t quite dead yet, but the latest results out of the Large Hadron Collider are giving it some trouble.

A theory that’s been around since the 1960s, supersymmetry proposes that all fermions (the fundamental particles of matter) have corresponding bosons (the carriers of basic forces). At the moment, including the Higgs, there are five boson types, which doesn’t match the 12 fermion types that exist.

As this BBC piece notes, one attraction of supersymmetry is that as-yet-undiscovered and very massive particles would account for some of the universe’s dark matter. For example, a galaxy spinning faster than it should given what we know about its mass might contain particles from the “supersymmetry zoo”, giving it the right mass.

The problem is that the LHC outputs are increasingly eliminating the mass levels at which supersymmetry may exist. In the latest work, detailed at the Large Hadron Collider conference taking place in Kyoto, a new BS Meson decay rules out one of the proposed energies for supersymmetry.

New Scientist explains the importance of the BS interaction here.

Put simply: the frequency of a particular decay, from BS into a pair of muons provides what the LHCb people call an important “bench test” of supersymmetry. The Standard Model predicts one rate at which the decay will be observed; supersymmetry predicts that the decay would be observed more often.

The reason that the test hasn’t been applied before is that you need an awful lot of data to test something that only occurs a handful of times in a billion.

In the Kyoto presentation, Johannes Albrecht of LHCb said the collider had set the decay rate to once for every 300 billion BS mesons, in close agreement with the Standard Model.

New Scientist quotes Albrecht as saying “This measurement certainly further shrinks the allowed parameter space for SUSY, but unfortunately, one cannot fully rule out SUSY,” says Albrecht.

However, since some supersymmetry models permit the one-in-three hundred billion decay rate, the LHC boffins will have to keep chipping away at the problem. ®

3 Big data security analytics techniques

More from The Register

next story
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
Opportunity selfie: Martian winds have given the spunky ol' rover a spring cleaning
Power levels up 70 per cent as the rover keeps on truckin'
Liftoff! SpaceX Falcon 9 lifts Dragon on third resupply mission to ISS
SpaceX snaps smartly into one-second launch window
LOHAN and the amazing technicolor spaceplane
Our Vulture 2 livery is wrapped, and it's les noix du mutt
KILLER ROBOTS, DNA TAMPERING and PEEPING CYBORGS: the future looks bright!
Americans optimistic about technology despite being afraid of EVERYTHING
R.I.P. LADEE: Probe smashes into lunar surface at 3,600mph
Swan dive signs off successful science mission
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
prev story

Whitepapers

Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Top three mobile application threats
Learn about three of the top mobile application security threats facing businesses today and recommendations on how to mitigate the risk.
Combat fraud and increase customer satisfaction
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.