Feeds

WTF is... RF-MEMS?

Apparently, a way to make smartphones much, much better phones

Boost IT visibility and business value

Feature Smartphones nowadays come with big screens, megapixel-packed cameras and, thanks to apps, many, many more features than anyone could have dreamed of in the early days of mobile telephony. It has even reached the stage where making telephone calls is just one small part of a modern phone. And yet the need to support all the radio technologies punters expect to be able to use, for voice and for data, ensures that wireless communications is still the hardest part of a phone’s design to get right.

Just ask the guys who worked on the iPhone 4...

Steve Jobs and the iPhone 4 antenna complex

Steve Jobs explains Apple's grip-of-death iPhone 4 antenna design

That was in 2010. Today, more than two years later, your typical smartphone is even more complex, wirelessly speaking. A 2012 handset might be expected to feature Wi-Fi in two different bands: 2.4GHz and 5GHz. Bluetooth too, in the 2.4GHz band. Then there’s 4G LTE for fast data communications and 3G for voice - because 4G can’t yet do voice properly - and for data in places where 4G hasn’t been rolled out yet. Just in case the user roams into a region without 3G either, phones still have to support 2G. All this cellular goodness has to work across a range of frequency bands to support different carriers in different countries.

Oh, and don’t forget there’s more wireless goodness coming. Devices are soon going to have to start supporting 60GHz short-range, high-speed data transfer communications if they’re to continue offering the full 802.11 standard. WiGig - aka Wireless Gigabit - builds on the agreed 802.11ad 60GHz specification and it’s coming in 2013-2014, trailing new pick-up specifications in its wake.

To get the promised ever higher data transfer rates, devices need to stick to these newer radio specifications very closely. Old, broad tolerances which might have been acceptable in the GSM and GPRS days will no longer do. That means more effort needs to be put in to get each antenna turned correctly from the off.

To make it all work, today’s smartphones need multiple, pre-tuned antennae and a host of different chips to manage the signals for each of these technologies. And they all have to fit within the phone’s casing. No one, after all, wants to go back to extendible external aerials.

Were punters happy with ever-fatter phones, that would be much less of an engineering problem than it is, but they’re not - they want thin, pocket-friendly devices.

The solution might seem obvious: build in a single, universal radio able to hop across all those radio technologies and frequencies at will. It’s an answer that’s easy to state, rather harder to realise.

Back in September 2011, Samsung released a Windows Phone smartphone, the Focus Flash, which featured a little-known first: it contained a radio frequency micro-electromechanical system (RF-MEMS). This tiny chip, developed by WiSpry, a company based in Irvine, California, was capable of physically changing its impedance under the influence of a software. The upshot: it could be used to dynamically tune the Focus Flash’s antenna to meet the needs of some if not all of the radio technologies the phone uses.

WiSpry has been working on RF-MEMS chips for more than ten years. Indeed, MEMS makers have been shipping these kinds of chips since the middle of the last decade. Getting them to work with mobile phones has long been a goal, but it’s proved hard to attain. While phones were chunky and could be stuffed with all the antennae they needed, there wasn’t much need to implement RF-MEMS in handsets. There were fewer radio technologies to support too.

The essential guide to IT transformation

Next page: Antennagate

More from The Register

next story
Déjà vu: Virgin Media jacks up broadband prices
Screw copper phone lines, we're UNIQUE, bleats telco
NBN Co claims 96 mbps download speeds for FTTN trial
Umina trial also delivers 30 mbps uploads, but exact rig used not revealed
UK fuzz want PINCODES on ALL mobile phones
Met Police calls for mandatory passwords on all new mobes
Netflix swallows yet another bitter pill, inks peering deal with TWC
Net neutrality crusader once again pays up for priority access
New Sprint CEO says he will lower axe on staff – but prices come first
'Very disruptive' new rates to be revealed next week
EE: STILL Blighty's best mobe network, says 'Frappucino' Moore
Fresh round of network stats fisticuffs possibly on the cards here
US TV stations bowl sueball directly at FCC's spectrum mega-sale
Broadcasters upset about coverage and cost as they shift up and down the dials
EE network whacked by 'PDP authentication failure' blunder
Carrier is 'aware' of cockup, working on a fix NOW
ROAD TRIP! An FCC road trip – Leahy demands net neutrality debate across US
You crashed watchdog's site, now time to crash its ears
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
BYOD's dark side: Data protection
An endpoint data protection solution that adds value to the user and the organization so it can protect itself from data loss as well as leverage corporate data.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?