Feeds

Boffins foul VM sandboxes with CPU-sniffing hack

Elaborate attack watches CPU activity on co-located VM, retrieves crypto key

The essential guide to IT transformation

So much for your sandbox US researchers at RSA, the University of Wisconsin and the University of North Carolina have used a malicious virtual machine to extract a cryptographic key from another virtual machine running on the same hardware.

The finding, published here (PDF), will not be welcomed by virtualisation companies or cloud computing providers, as it shows that the logical isolation between virtual machines may not be as secure as promised. Hypervisor vendors and cloud providers alike constantly talk up security, asserting that despite virtual machines sharing physical resources there's no extra risk associated with this mode of computing.

The researchers' findings seem to both support and disprove those assertions.

Support comes from the fact the paper's report that the attack was not easy, as it required … “overcoming challenges including core migration, numerous sources of channel noise, and the difficulty of pre-empting the victim with sufficient frequency to extract fine-grained information from it.”

Security worries will be fuelled by the researchers' success and use of Xen as a test platform, as it is said to power AWS's and Rackspace's cloud offerings. The paper also points out that Xen powers some desktop virtualisation setups, hinting that desktop-on-desktop attacks also need to be considered.

The conditions for the test were as follows:

“Our threat model assumes that Xen maintains logical isolation between mutually untrusting co-resident VMs, and that the attacker is unable to exploit software vulnerabilities that allow it to take control of the entire physical node. We assume the attacker knows the software running on the victim VM and has access to a copy of it.”

With that rig in place, the researchers set about trying to sniff activity on the victim VM with what is described as an “access-driven attack in which the attacker runs a program on the system that is performing the cryptographic operation of interest.”

Such attacks work as follows:

“The attacker program monitors usage of a shared architectural component to learn information about the key, e.g., the data cache, instruction cache, floating-point multiplier, or branch-prediction cache. The strongest attacks in this class, first demonstrated only recently , are referred to as asynchronous, meaning that they do not require the attacker to achieve precisely timed observations of the victim by actively triggering victim operations. These attacks leverage CPUs with simultaneous multi-threading (SMT) or the ability to game operating system process schedulers; none were shown to work in symmetric multi-processing (SMP) settings.”

The paper delves into very technical detail about how the research team found ways to observe and decipher CPU behaviour, but eventually declares that using “a novel combination of low-level systems implementation and sophisticated tools such as classifiers and sequence alignment algorithms, we assembled an attack that was sufficiently powerful to extract ElGamal decryption keys from a victim VM in our lab tests.”

The paper often goes out of its way to point out the attack it describes is unusual and required a lot of effort to achieve. Even so, it will likely make virtualisation users just a little less confident that their sandboxes will always remain free of unpleasant contaminants. ®

Next gen security for virtualised datacentres

More from The Register

next story
Ice cream headache as black hat hacks sack Dairy Queen
I scream, you scream, we all scream 'DATA BREACH'!
Goog says patch⁵⁰ your Chrome
64-bit browser loads cat vids FIFTEEN PERCENT faster!
NIST to sysadmins: clean up your SSH mess
Too many keys, too badly managed
Scratched PC-dispatch patch patched, hatched in batch rematch
Windows security update fixed after triggering blue screens (and screams) of death
Researchers camouflage haxxor traps with fake application traffic
Honeypots sweetened to resemble actual workloads, complete with 'secure' logins
Attack flogged through shiny-clicky social media buttons
66,000 users popped by malicious Flash fudging add-on
New Snowden leak: How NSA shared 850-billion-plus metadata records
'Federated search' spaffed info all over Five Eyes chums
Three quarters of South Korea popped in online gaming raids
Records used to plunder game items, sold off to low lifes
Oz fed police in PDF redaction SNAFU
Give us your metadata, we'll publish your data
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up Big Data
Solving backup challenges and “protect everything from everywhere,” as we move into the era of big data management and the adoption of BYOD.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?