Feeds

Curiosity probe tastes Mars soil: Dude, this reminds me of Hawaii

Aloha, potential microbial life-forms

Securing Web Applications Made Simple and Scalable

Science lab and nuclear truck Curiosity has tasted its first Martian soil and decided it's a bit like a piece of Hawaii.

The Mars rover's CheMin instrument analysed the minerals in its fistful of dust and found the composition is similar to the basaltic volcanic soil of the islands.

"We had many previous inferences and discussions about the mineralogy of Martian soil," David Blake, principal investigator for CheMin, said. "Our quantitative results provide refined and in some cases new identifications of the minerals in this first X-ray diffraction analysis on Mars."

Martian soil in Curiosity's robotic arm scoop

To test the soil, Curiosity scooped some up with its robotic arm and dumped it in the chemistry and mineral analysing instrument to get solid information on its mineralogical makeup.

Figuring out what the Red Planet is made of is an obvious method to fulfil the rover's prime objective - assessing whether microbial life has ever existed on Mars. The minerals tell boffins about the conditions under which they formed, helping identify past environmental conditions.

Chemical analysis also gives some information, but not as accurately as X-ray diffraction to assess mineralogical content. Diamond and graphite are both made up of carbon atoms, but their differing crystal structures result in two very different minerals.

Examining the Martian soil gives boffins an idea of the more recent history of the planet. Curiosity is also built to analyse rocks which are billions of years old to look further into the past. The first rock probed by the rover also showed similarity to rocks on volcanic islands like Hawaii and hinted at the possibility of flowing water on ancient Mars.

"So far, the materials Curiosity has analysed are consistent with our initial ideas of the deposits in Gale Crater recording a transition through time from a wet to dry environment. The ancient rocks, such as the conglomerates, suggest flowing water, while the minerals in the younger soil are consistent with limited interaction with water," said David Bish, CheMin co-investigator. ®

HP ProLiant Gen8: Integrated lifecycle automation

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
MARS NEEDS OCEANS to support life - and so do exoplanets
Just being in the Goldilocks zone doesn't mean there'll be anyone to eat the porridge
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.
Mobile application security vulnerability report
The alarming realities regarding the sheer number of applications vulnerable to attack, and the most common and easily addressable vulnerability errors.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.