Feeds

NYU boffins demo tiny tractor beam

To beam the impossible beam

Top 5 reasons to deploy VMware with Tegile

While using light pressure to move something in the same direction as light is well-understood, using beams to pull objects is a bit more difficult.

Now, a couple of Davids from New York University – Ruffner and Grier, respectively – have demonstrated just that. In a paper published in Physical Review Letters, and available in full at David Ruffner’s research page here, they claim to have demonstrated a tractor beam that can move an object either towards or away from the light source, “without the aid of outside forces”.

A beam called a Bessel beam is at the heart of the demonstration. Bessel beams direct light in concentric circles around a single dot, and this gives the beams an interesting property: they reform after passing an obstacle. In mathematics, if not in real life, such beams could propagate forever, because they don’t suffer the diffraction that scatters ordinary lasers.

The way that Bessel beams reform behind a (small) obstruction has already made them useful for optical tweezers, but Ruffner and Grier found that a single beam couldn’t be sufficiently tuned to act as a tractor.

To create the “tractor beam”, the researchers added a second Bessel beam, and then varied the relative phase of the two beams. This makes the optical trap created in the beams move – and the trapped particle moves with the trap, “allowing bi-directional transport in three dimensions”, they write.

As New Scientist explains, the interaction of the two Bessel beams creates an alternating pattern of bright and dark regions. With the right tuning, photons in the bright regions scatter back towards the light source, creating a pico-scale light pressure that pushes a particle in the beam towards the next bright region.

The demonstration by Ruffner and Grier is not, however, ready to trap the Starship Enterprise: they demonstrated its effectiveness by moving microscopic spheres of silica, suspended in water, over distances of 30 micrometers. ®

Bootnote: This is, by the way, different from optical tweezers, which already exist. They can move micro-scale objects in two dimensions, but don’t exert a noticeable pull towards the beam source. ®

Beginner's guide to SSL certificates

More from The Register

next story
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
Bacon-related medical breakthrough wins Ig Nobel prize
Is there ANYTHING cured pork can't do?
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.