Feeds

NYU boffins demo tiny tractor beam

To beam the impossible beam

Build a business case: developing custom apps

While using light pressure to move something in the same direction as light is well-understood, using beams to pull objects is a bit more difficult.

Now, a couple of Davids from New York University – Ruffner and Grier, respectively – have demonstrated just that. In a paper published in Physical Review Letters, and available in full at David Ruffner’s research page here, they claim to have demonstrated a tractor beam that can move an object either towards or away from the light source, “without the aid of outside forces”.

A beam called a Bessel beam is at the heart of the demonstration. Bessel beams direct light in concentric circles around a single dot, and this gives the beams an interesting property: they reform after passing an obstacle. In mathematics, if not in real life, such beams could propagate forever, because they don’t suffer the diffraction that scatters ordinary lasers.

The way that Bessel beams reform behind a (small) obstruction has already made them useful for optical tweezers, but Ruffner and Grier found that a single beam couldn’t be sufficiently tuned to act as a tractor.

To create the “tractor beam”, the researchers added a second Bessel beam, and then varied the relative phase of the two beams. This makes the optical trap created in the beams move – and the trapped particle moves with the trap, “allowing bi-directional transport in three dimensions”, they write.

As New Scientist explains, the interaction of the two Bessel beams creates an alternating pattern of bright and dark regions. With the right tuning, photons in the bright regions scatter back towards the light source, creating a pico-scale light pressure that pushes a particle in the beam towards the next bright region.

The demonstration by Ruffner and Grier is not, however, ready to trap the Starship Enterprise: they demonstrated its effectiveness by moving microscopic spheres of silica, suspended in water, over distances of 30 micrometers. ®

Bootnote: This is, by the way, different from optical tweezers, which already exist. They can move micro-scale objects in two dimensions, but don’t exert a noticeable pull towards the beam source. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
China building SUPERSONIC SUBMARINE that travels in a BUBBLE
Shanghai to San Fran in two hours would be a trick, though
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.