Feeds

University of Minnesota demos light-powered nano-relay

Photon amplification without electricity

Build a business case: developing custom apps

The “light sail” – a spacecraft powered by the pressure of photons streaming from a handy star – might still be science fiction, but researchers in the US have demonstrated that photons can flip switches at the nano scale.

The University of Minnesota research published in Nature Communications (abstract here) describes a nano-technology that creates relays controlled by light instead of electricity.

Light in the resonating ring can be amplified enough to set the left-hand waveguide moving

without needing electricity. Source: University of Minnesota

Since a small control signal of light can be used to switch a larger light signal on and off, the nano-relay can act as an all-optical amplifier that works without converting the optical signal into electricity, and without relying on non-linear materials (another key research field seeking the “all-optical” holy grail).

The researchers’ device comprises a pair of optical waveguides and a tiny toroid to act as a resonator in which light can gain intensity, an amplification that allows a weaker signal from the first waveguide to generate a strong optical force on the second waveguide, causing it to resonate and alter the transmission of the second signal.

While “cavity optomechanics” is a hot field for research, the University of Minnesota scientists, led by Mo Li, say their device is the first to achieve a significant non-linear behavior (ie, amplification) with a broad bandwidth.

As they state in the article’s abstract, “current implementation[s] of cavity optomechanics achieves both excitation and detection only in a narrow band of cavity resonance,” – hindering the technology’s usefulness in broadband systems. Li’s work has resulted in a broadband system that can be implemented at a chip scale.

By overcoming that bandwidth limitation, the researchers say their device is suitable for the wavelength-multiplexed systems in use in carrier-scale optical networks. ®

Securing Web Applications Made Simple and Scalable

More from The Register

next story
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.