Feeds

Berkeley Lab proposes 4D clock

‘Space-time crystal’ would outlast the universe

Remote control for virtualized desktops

It’s not quite a perpetual motion machine: scientists at the US Lawrence Berkeley National Laboratory have proposed a design for a timing crystal they say would theoretically outlast the universe.

In this paper, published on Arxiv, the researchers propose a design for "a 4D crystal that has periodic structures in both space and time”.

While it sounds blue-sky, the researchers say a space-time crystal would provide important inputs to understanding problems in many-body physics (complex interactions between large numbers of individual particles).

To create the “space-time crystal”, the paper suggests trapping particles of the same charge in space using an electrical field. Their Coulomb repulsion forces them into a ring configuration, at their lowest possible energy state.

In classical mechanics, that’s an end to the matter: the “lowest energy state” would mean the particles can’t move. This is, it seems, the characteristic of a 3D crystal in the macro world: the particles have organized into their lowest energy state. To get them moving – for example, in a computer’s timing crystal – external energy is needed.

However, there’s an escape clause at the quantum level: the ions can be given a push with a weak magnetic field, to get them rotating, and since they lose no energy to the outside world, that rotation should continue forever – even, according to research leader Xiang Zhang, after the “heat death” of the universe. And since there is no energy output from the crystal, it doesn’t break the rules to offer a perpetual motion machine.

As Zhang explains here, “a spatial ring of trapped ions in persistent rotation will periodically reproduce itself in time, forming a temporal analog of an ordinary spatial crystal. With a periodic structure in both space and time, the result is a space-time crystal.” ®

Intelligent flash storage arrays

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Rosetta science team thinks Philae might come to life in the spring
And disclose the biggest surprise of Comet 67P
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
prev story

Whitepapers

Seattle children’s accelerates Citrix login times by 500% with cross-tier insight
Seattle Children’s is a leading research hospital with a large and growing Citrix XenDesktop deployment. See how they used ExtraHop to accelerate launch times.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
Why CIOs should rethink endpoint data protection in the age of mobility
Assessing trends in data protection, specifically with respect to mobile devices, BYOD, and remote employees.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Website security in corporate America
Find out how you rank among other IT managers testing your website's vulnerabilities.