Feeds

IBM scientists take image of atomic bonds

Ready for my close-up, mister DeMille

High performance access to file storage

How’s this for a close-up: an image that can differentiate between the different chemical bonds in an individual molecule? That’s what IBM’s Zurich research lab is claiming in a paper published in Science.

The paywalled piece is titled with the pizazz typical of science papers – Bond-Order Discrimination by Atomic Force Microscopy – but it’s worth browsing because the image is so cool.

IBM's image of a nanographene molecule: the bonds at the centre involve more electrons and are shorter

than those at the edge. Image: IBM

Created with an atomic force microscope (AFM), the image shows a nanographene molecule and clearly visualises the bonds in the molecule, showing different lengths of bonds. The scientists say the imaging technique will help them characterise graphene, the wonderstuff of developments in electronics.

"This can increase basic understanding at the level of individual molecules ... in particular, the relaxation of bonds around defects in graphene as well as the changing of bonds in chemical reactions and in excited states were observed", IBM says.

To quote IBM scientist Leo Gross from its announcement: "We found two different contrast mechanisms to distinguish bonds. The first one is based on small differences in the force measured above the bonds. We expected this kind of contrast but it was a challenge to resolve.”

"The second contrast mechanism really came as a surprise: bonds appeared with different lengths in AFM measurements. With the help of ab initio calculations we found that the tilting of the carbon monoxide molecule at the tip apex is the cause of this contrast.”

The AFM uses a single carbon monoxide molecule as the sensing tip. The molecule oscillates above the sample to measure the forces between the CO molecule and the sample to create the image. ®

Update: The original version of this story identified the image as showing C60. That has now been corrected. IBM imaged both nanographene and C60 "buckyballs". There are more images on Flickr, here.

High performance access to file storage

More from The Register

next story
Fancy joining Reg hack on quid-a-day challenge?
Recruiting now for charity starvation diet
Red-faced LOHAN team 'fesses up in blown SPEARS fuse fiasco
Standing in the corner, big pointy 'D' hats
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
Opportunity selfie: Martian winds have given the spunky ol' rover a spring cleaning
Power levels up 70 per cent as the rover keeps on truckin'
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
Top Secret US payload launched into space successfully
Clandestine NRO spacecraft sets off on its unknown mission
prev story

Whitepapers

Top three mobile application threats
Learn about three of the top mobile application security threats facing businesses today and recommendations on how to mitigate the risk.
Combat fraud and increase customer satisfaction
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
SANS - Survey on application security programs
In this whitepaper learn about the state of application security programs and practices of 488 surveyed respondents, and discover how mature and effective these programs are.