Feeds

Scientists provide a measure of uncertainty

What would Heisenberg’s position be?

The smart choice: opportunity from uncertainty

A group of Canadian PhD researchers claim to have obtained information beyond the “Heisenberg limit” using a technique called “weak measurement”.

Heisenberg’s Uncertainty Principle limits the amount of information that can be known at the quantum level: the more you know about the position of an object, the less you can know about its momentum. As this article at Phys.org puts it, “any attempt to measure a particle’s position must randomly change its speed”.

The University of Toronto researchers have looked at measurements of a single property – polarization – and how to obtain information about polarization without disturbing it.

The answer is to use a technique described as “weak measurement”, in which the quantum system is probed with a very small interaction, so as to obtain information about it with a minimum of change. The idea is to try and work around the problem Heisenberg originally framed, the “observer effect”.

Lee Rozema, a University of Toronto PhD student and lead author of the study, designed an apparatus to measure a photon’s polarization, making a weak measurement of the photon before it was sent to the apparatus. That pre-measurement, they found, induced less disturbance than predicted by Heisenberg’s precision-disturbance relation.

By repeating the experiment many times, the researchers say, they were able to “get a very good idea about how much the photon is disturbed”.

As the American Physical Society notes, while Heisenberg’s statement of the minimum uncertainty any quantum system must possess is “rigorously proven”, doubt has been cast on his calculation of the observer effect in recent years.

There is a practical application to all of this. Systems like quantum cryptography use the precision-disturbance relation to decide whether or not a communication has been “sniffed” (so to speak). Work such as Rozema’s suggests that the mathematics used to decide whether or not a quantum channel is secure might have to be revised. ®

The Power of One Infographic

More from The Register

next story
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
Jurassic squawk: Dinos were Earth's early FEATHERED friends
Boffins research: Ancient dinos may all have had 'potential' fluff
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.