Feeds

D-Wave goes public with 81-qubit protein modeling

All together now: ‘It’s quantum, innit?’

Secure remote control for conventional and virtual desktops

D-Wave – whose claims to have a working quantum computer have been met with skepticism and major contracts in equal measure – has published a paper in Nature in which it demonstrates the application of quantum annealing to protein folding analysis.

Protein folding is a difficult problem in the classical world, because of the vast number of possible solutions. As D-Wave’s authors put it in their paper (online in full here): “Finding low-energy threedimensional structures is an intractable problem even in the simplest model, the Hydrophobic-Polar (HP) model.”

In nature, proteins should normally fold themselves to a “ground state” – the lowest possible energy configuration for that particular combination of amino acids – because the low-energy state is the most stable. When folding goes wrong in humans, it can result in a range of diseases like Alzheimer’s, Huntington’s and Parkinsons.

However, predicting the “correct” folding for any given protein on a computer is difficult and time-consuming – so much so that scientists have found that crowd-sourcing using the game FoldIt can get results where supercomputers don’t.

D-Wave’s paper claims to demonstrate the first application of quantum principles to solving protein folding. It’s only been performed on a small scale – using 81 qubits – and is intended as a benchmark.

Moreover, the authors state that the scale of the problem they’ve demonstrated would still be solvable using a classical computer. “Even though the cases presented here still can be solved on a classical computer by exact enumeration (the six-amino-acid problem has only 40 possible configurations), it is remarkable that the device anneals to the ground state of a search space of 281 possible computational outcomes. This study provides a proof-of-principle that optimization of biophysical problems such as protein folding can be studied using quantum mechanical devices,” the authors write.

The Register will watch with interest to see how well the D-Wave paper stands up to scrutiny. ®

Next gen security for virtualised datacentres

More from The Register

next story
Vulture 2 takes a battering in 100km/h test run
Still in one piece, but we're going to need MORE POWER
TRIANGULAR orbits will help Rosetta to get up close with Comet 67P
Probe will be just 10km from Space Duck in October
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
China to test recoverable moon orbiter
I'll have some rocks and a moon cheese pizza please, home delivery
What does a flashmob of 1,024 robots look like? Just like this
Sorry, Harvard, did you say kilobots or KILLER BOTS?
NASA's rock'n'roll shock: ROLLING STONE FOUND ON MARS
No sign of Ziggy Stardust and his band
Why your mum was WRONG about whiffy tattooed people
They're a future source of RENEWABLE ENERGY
Vulture 2 spaceplane autopilot brain surgery a total success
LOHAN slips into some sexy bespoke mission parameters
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.