Feeds

Researchers reveal radical RAID rethink

“Pipelined erasure coding” helps storage to scale at speed

Intelligent flash storage arrays

Singaporean researchers have proposed a new way to protect the integrity of data in distributed storage systems and say their “RapidRAID” system offers top protection while consuming fewer network, computing and storage array resources than other approaches.

RAID – redundant arrays of inexpensive disks – has been a storage staple for a almost quarter of a century. The technique involves replicating data across a number of disks so that failure or loss of a single spindle does not result in data loss. When a drive dies, RAID means a new drive can be added to an array and the data from the original drive will be restored. Different “levels” of RAID work with varying quantities of disk and deliver different levels of reliability.

RAID has, of late, become less popular as various scale-out architectures offer different approaches to redundant data storage. The technique is also challenged by multi-terabyte disk drives, as the sheer quantity of data on such disks means rebuilding a drive can take rather longer, and hog more IOPS, than many users are willing to endure.

Erasure codes are one of the techniques challenging RAID and can most easily be understood as a form of metadata. Erasure codes allow fragments of data to be spread across a wider pool of disks, before the desired data is re-assembled using fragments from multiple sources. Erasure codes feature in the Google File System, Hadoop’s file system, Azure and several commercial products.

Some have even described erasure codes as delivering RAIN – a redundant array of inexpensive nodes – that is positioned as a successor to RAID.

The Singaporean researchers’ work, available on arXiv, proposes a new scheme called RapidRAID that goes beyond other implementations of erasure codes, reducing the amount of storage required to create a viable archive while also speeding the time required to create that archive.

The team thinks this is possible with what it calls “pipelined insertion” under which:

“… the encoding process is distributed among those nodes storing replicated data of the object to be encoded, which exploits data locality and saves network traffic. We then arrange the encoding nodes in a pipeline where each node sends some partially encoded data to the next node, which creates parity data simultaneously on different storage nodes, avoiding the extra time required to distribute the parity after the encoding process is terminated.”

The paper linked to above then proposes RapidRAID, a set of erasure codes which, just like RAID, offer different levels of data protection.

Tests of the new codes are described in the paper, which compares RapidRAID to the Reed-Solomon erasure codes used in many current implementations. In a test involving 50 thin clients and 16 EC2 instances, the researchers proclaim RapidRAID superior in some ways.

The researchers therefore declare RapidRAID a viable big data enabler, but conclude that there’s more work to be done before it can be declared suitable for applications that require more than two copies of data.

The codes are available for download on github. ®

Intelligent flash storage arrays

More from The Register

next story
Just don't blame Bono! Apple iTunes music sales PLUMMET
Cupertino revenue hit by cheapo downloads, says report
The DRUGSTORES DON'T WORK, CVS makes IT WORSE ... for Apple Pay
Goog Wallet apparently also spurned in NFC lockdown
Cray-cray Met Office spaffs £97m on VERY AVERAGE HPC box
Only 250th most powerful in the world? Bring back Michael Fish
Microsoft brings the CLOUD that GOES ON FOREVER
Sky's the limit with unrestricted space in the cloud
'ANYTHING BUT STABLE' Netflix suffers BIG Europe-wide outage
Friday night LIVE? Nope. The only thing streaming are tears down my face
IBM, backing away from hardware? NEVER!
Don't be so sure, so-surers
Google roolz! Nest buys Revolv, KILLS new sales of home hub
Take my temperature, I'm feeling a little bit dizzy
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.
Getting ahead of the compliance curve
Learn about new services that make it easy to discover and manage certificates across the enterprise and how to get ahead of the compliance curve.