Feeds

Will the titans of storage decide to flash their bits?

What religion do you suppose the Pope is

Security for virtualized datacentres

The fundamental decision facing most of the online storage industry is whether to use spinning or flashing bits or both. Flashing bit growth, solid state NAND storage, is booming and set to grow strongly. Why aren't Seagate, Toshiba and Western Digital, the spinning disk-supplying tri-opoly, as successful with flash drives as OCZ, LSI, Micron, SanDisk, Fusion-io and other flash storage suppliers? How come Toshiba is making more headway than Seagate and Western Digital?

The three spinning disk drive bit storage suppliers face the classic incumbent's dilemma; welcome the new flash technology or fight it. So far they are really welcoming it - Toshiba, offering it a middling welcome - Seagate, which is delivering Pulsar SSDs and also hybrid disk drives, ones with an on-board flash cache, and a guarded, half-hearted welcome - Western Digital, with a niche embedded SSD business; what you might call a bear-hug from one, a handshake from another, and a brief nod of the head from the third.

HDD SSD HW SW Suppliers table

Overview of the flash industry - this is not an exhaustive list.

There are three disk drive suppliers; Seagate, Toshiba and Western Digital. There are four main flash chip suppliers; Samsung, Toshiba, Micron and Hynix; yes, you spotted it; Toshiba is in both groups; it is the bear-hugger. All six of these suppliers make flash drives, that is solid state drives (SSDs) packaged in disk bay sizes with disk type interfaces - FC, SAS and SATA, or PCIe flash cards.

To understand the background to what is happening let's take a whistle-stop tour of the spinning and flashing drive industries and manufacturing operations.

Spinning disk industry

The spinning disk triumvirate manufactures one of the most fabulously complex pieces of electro-mechanical tech in the world and does so to the tune of tens of millions of drives a year. It embodies hi-tech down to a molecular scale, mechanisms that boggle the mind, and firmware performing signal processing and error detection and correcting algorithms of mind-bending complexity at lightning speed.

A drive consists of glass or aluminium platters coated with a recording media layer and spun by an electric motor. A read/write head with semi conductor technology at its tip is mounted on an arm and moves across and above the surfaces of the spinning platters, reading and writing bits. A controller does all the processing needed for this, understanding disk tracks and sectors, decoding and error-correcting read signals and sending./receiving bits to the connected host computer.

Disk drives are made in a set of disparate plants; the platters in one, the reads/write heads in another, the controllers in a third, and assembly and test in a fourth type of plant. Each of these type of plants has a network of component suppliers feeding it. The industry is generally vertically integrated but not to the extent of having single mega-plants with glass, aluminium, and silicon going in one end and disk drives coming out of the other. There are independent head producers, like TDK, and independent platter and electric motor producers. There are also independent controller function producers, such as LSI.

TDK's TMR read/write hard disk drive head

Disk read/write head

This is a difference with the flash drive industry which has a simpler manufacturing model.

Flash threat to disk

Disk drives take time to find data; the head has to go across the disk to the right track and then the disk has to rotate to bring the write section of the track under the read head. A flash drive responds hundreds of time faster than a disk drive but costs a lot more. By storing data on many spindles a disk array can stream data at roughly the same rate as a flash drive but that brings the cost of the disk storage up.

Solid state drives (SSDs) as the choice when the number of IO operations per second (IOPS) is paramount. SSDs can also whup disks in the space, power and cooling stakes, being smaller, needing less electricity and running cooler for a given number of IOPS. The effect if this is being seen in the virtual collapse of the 1.8-inch hard disk drive (HDD) industry, and the encroaching of SSDS into storage arrays to replace fast Fibre Channel and SAS disk drives, the 15,000rpm drives, in high IOPS applications.

Samsung SSD830 240GB SSD

Samsung SSD

SSDs are also being used in thin and light notebook and ultrabook computers because they are, obviously, lighter, start-up and run applications faster, and have a longer battery life. As flash storage becomes cheaper over time the threat will extend to 10,000rpm drives and to desktop PC disk drives. Should a HDD supplier, facing this developing threat, fight the oncoming flash flood or redefine themselves and adopt flash technology, thus cannibalising their own HDD sales?

The problem is fairly long term as there simply isn't enough flash fab capacity to replace shipped HDD capacity and it will take years to build it. This removes some urgency from the situation for the two HDD suppliers lacking flash fabs; Seagate and Western Digital.

Providing a secure and efficient Helpdesk

More from The Register

next story
Docker's app containers are coming to Windows Server, says Microsoft
MS chases app deployment speeds already enjoyed by Linux devs
IBM storage revenues sink: 'We are disappointed,' says CEO
Time to put the storage biz up for sale?
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
Windows 10: Forget Cloudobile, put Security and Privacy First
But - dammit - It would be insane to say 'don't collect, because NSA'
Symantec backs out of Backup Exec: Plans to can appliance in Jan
Will still provide support to existing customers
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Three 1TB solid state scorchers up for grabs
Big SSDs can be expensive but think big and think free because you could be the lucky winner of one of three 1TB Samsung SSD 840 EVO drives that we’re giving away worth over £300 apiece.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.