Feeds

Will the titans of storage decide to flash their bits?

What religion do you suppose the Pope is

Intelligent flash storage arrays

The fundamental decision facing most of the online storage industry is whether to use spinning or flashing bits or both. Flashing bit growth, solid state NAND storage, is booming and set to grow strongly. Why aren't Seagate, Toshiba and Western Digital, the spinning disk-supplying tri-opoly, as successful with flash drives as OCZ, LSI, Micron, SanDisk, Fusion-io and other flash storage suppliers? How come Toshiba is making more headway than Seagate and Western Digital?

The three spinning disk drive bit storage suppliers face the classic incumbent's dilemma; welcome the new flash technology or fight it. So far they are really welcoming it - Toshiba, offering it a middling welcome - Seagate, which is delivering Pulsar SSDs and also hybrid disk drives, ones with an on-board flash cache, and a guarded, half-hearted welcome - Western Digital, with a niche embedded SSD business; what you might call a bear-hug from one, a handshake from another, and a brief nod of the head from the third.

HDD SSD HW SW Suppliers table

Overview of the flash industry - this is not an exhaustive list.

There are three disk drive suppliers; Seagate, Toshiba and Western Digital. There are four main flash chip suppliers; Samsung, Toshiba, Micron and Hynix; yes, you spotted it; Toshiba is in both groups; it is the bear-hugger. All six of these suppliers make flash drives, that is solid state drives (SSDs) packaged in disk bay sizes with disk type interfaces - FC, SAS and SATA, or PCIe flash cards.

To understand the background to what is happening let's take a whistle-stop tour of the spinning and flashing drive industries and manufacturing operations.

Spinning disk industry

The spinning disk triumvirate manufactures one of the most fabulously complex pieces of electro-mechanical tech in the world and does so to the tune of tens of millions of drives a year. It embodies hi-tech down to a molecular scale, mechanisms that boggle the mind, and firmware performing signal processing and error detection and correcting algorithms of mind-bending complexity at lightning speed.

A drive consists of glass or aluminium platters coated with a recording media layer and spun by an electric motor. A read/write head with semi conductor technology at its tip is mounted on an arm and moves across and above the surfaces of the spinning platters, reading and writing bits. A controller does all the processing needed for this, understanding disk tracks and sectors, decoding and error-correcting read signals and sending./receiving bits to the connected host computer.

Disk drives are made in a set of disparate plants; the platters in one, the reads/write heads in another, the controllers in a third, and assembly and test in a fourth type of plant. Each of these type of plants has a network of component suppliers feeding it. The industry is generally vertically integrated but not to the extent of having single mega-plants with glass, aluminium, and silicon going in one end and disk drives coming out of the other. There are independent head producers, like TDK, and independent platter and electric motor producers. There are also independent controller function producers, such as LSI.

TDK's TMR read/write hard disk drive head

Disk read/write head

This is a difference with the flash drive industry which has a simpler manufacturing model.

Flash threat to disk

Disk drives take time to find data; the head has to go across the disk to the right track and then the disk has to rotate to bring the write section of the track under the read head. A flash drive responds hundreds of time faster than a disk drive but costs a lot more. By storing data on many spindles a disk array can stream data at roughly the same rate as a flash drive but that brings the cost of the disk storage up.

Solid state drives (SSDs) as the choice when the number of IO operations per second (IOPS) is paramount. SSDs can also whup disks in the space, power and cooling stakes, being smaller, needing less electricity and running cooler for a given number of IOPS. The effect if this is being seen in the virtual collapse of the 1.8-inch hard disk drive (HDD) industry, and the encroaching of SSDS into storage arrays to replace fast Fibre Channel and SAS disk drives, the 15,000rpm drives, in high IOPS applications.

Samsung SSD830 240GB SSD

Samsung SSD

SSDs are also being used in thin and light notebook and ultrabook computers because they are, obviously, lighter, start-up and run applications faster, and have a longer battery life. As flash storage becomes cheaper over time the threat will extend to 10,000rpm drives and to desktop PC disk drives. Should a HDD supplier, facing this developing threat, fight the oncoming flash flood or redefine themselves and adopt flash technology, thus cannibalising their own HDD sales?

The problem is fairly long term as there simply isn't enough flash fab capacity to replace shipped HDD capacity and it will take years to build it. This removes some urgency from the situation for the two HDD suppliers lacking flash fabs; Seagate and Western Digital.

Intelligent flash storage arrays

More from The Register

next story
NSA SOURCE CODE LEAK: Information slurp tools to appear online
Now you can run your own intelligence agency
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
NASA launches new climate model at SC14
75 days of supercomputing later ...
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
BOFH: WHERE did this 'fax-enabled' printer UPGRADE come from?
Don't worry about that cable, it's part of the config
Stop the IoT revolution! We need to figure out packet sizes first
Researchers test 802.15.4 and find we know nuh-think! about large scale sensor network ops
SanDisk vows: We'll have a 16TB SSD WHOPPER by 2016
Flash WORM has a serious use for archived photos and videos
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
prev story

Whitepapers

Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
Why CIOs should rethink endpoint data protection in the age of mobility
Assessing trends in data protection, specifically with respect to mobile devices, BYOD, and remote employees.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Protecting against web application threats using SSL
SSL encryption can protect server‐to‐server communications, client devices, cloud resources, and other endpoints in order to help prevent the risk of data loss and losing customer trust.