Feeds

'Biologically accurate' robot legs walk like an Egyptian

Or anyone else for that matter

Next gen security for virtualised datacentres

Vid US boffins have come up with a pair of robotic legs that they reckon are the first to walk in a biologically accurate (if somewhat jerky) manner.

The researchers want to try to mimic the actual process of walking, particularly the bit where people don't actually have to think to do it, so they can figure out how babies learn to get around and possibly help spinal-cord-injury patients to regain the ability.

So for their robot trousers, the boffins put in simplified versions of the neural and musculoskeletal architecture and sensory feedback pathways that humans have.

The key to people walking is the central pattern generator, a neural network in the spinal cord that generates rhythmic muscle signals. The CPG works by picking up info from different parts of the body that are responding to the environment and using them to produce and control the rhythm.

The robotic legs use the simplest version of a CPG, a half-centre, which consists of just two neurones firing alternatively to set the rhythm, as well as sensors feeding into the half-centre. For example, load sensors use the force in the limb to tell when the leg is being pressed down for a step.

"Interestingly, we were able to produce a walking gait, without balance, which mimicked human walking with only a simple half-centre controlling the hips and a set of reflex responses controlling the lower limb," study co-author Dr Theresa Klein said in a canned statement.

The boffins now think that that might be how babies start out, with a simple half-centre, which would explain why they are able to show a walking pattern on a treadmill before they learn to walk. Over time, the baby then expends the network for more complex walking patterns.

"This underlying network may also form the core of the CPG and may explain how people with spinal cord injuries can regain walking ability if properly stimulated in the months after the injury," Klein added.

The University of Arizona researchers' study has been published in IOP's Journal of Neural Engineering. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
Volcanic eruption in Iceland triggers CODE RED aviation warning
Lava-spitting Bárðarbunga prompts action from Met Office
LOHAN Kickstarter breaks NINETEEN THOUSAND of your EARTH POUNDS
That's right, OVER 9,000 beer tokens - and counting
Major cyber attack hits Norwegian oil industry
Statoil, the gas giant behind the Scandie social miracle, targeted
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.