Feeds

Revealed at last: Universe's intergalactic dark matter skeleton

Boffins' first glimpse of the structural framework of our universe

High performance access to file storage

Higgs, Schmiggs... When that infinitesimal speck was sucking up all the journalistic oxygen on Independence Day, another momentous scientific discovery was also being announced: the first observation of filaments of dark matter, the stuff that forms the "skeleton" of our universe.

Invisible, inexplicable dark matter makes up the vast majority of the mass of our universe. All the matter that we can see – stars, galaxies, planets, haggis, Michele Bachman – totals only between 4 and 5 per cent of our universe's mass.

The rest? There's dark matter and dark energy, but exactly what those dark enigmas are ... well, as Geoffrey Rush's Philip Henslowe was wont to say in Shakespeare in Love, "It's a mystery."

Sky boffins have been able to detect galactic-sized blobs of dark matter by observing light being bent by their enormous gravitational pull. The exact same star-filled galaxy, for example, can appear twice in the sky as light from it bends on either side of a dark matter formation.

What has not been observed – until now, that is – are the thin filaments of dark matter that have been thought to connect the massive dark-matter nodes, and which give the universe, both visible and invisible, its structure.

"Dark matter really governs structure formation," the lead author of the paper which reveals the discovery, Jörg Dietrich of University Observatory Munich, told the Boston Herald. "The galaxy clusters and the filaments are mostly made up of dark matter. The normal matter just follows the distribution of dark matter."

As noted in an announcement of the paper on Nature.com – with, by the way, the lovely title of "Dark matter's tendrils revealed" – Dietrich and his team were able to track down a particularly massive filament bridging the galaxy clusters Abell 222 and Abell 223.

And when we say "massive", we're not just whistling the proverbial Dixie. The filament that the team detected is about 18 megaparsecs long – if you happened to be asleep that day in your astrophysics class, know that a megaparsec is equal to about 3.09x1022 meters – and has a mass they calculate to be somewhere between 6.5x1013 and 9.8x1013 times that of our Sun.

What's more, most of the mass of the filament happens to be on a direct line of sight to Earth. With the filament in that orientation and of that immense mass, Dietrich and his team were able to detect its gravitational lensing of the light provided by 40,000 individual background galaxies.

The team then used observations of the filament's constituent materials, made by the European Space Agency's X-ray Multi-Mirror Mission (XMM-Newton) spacecraft, to determine that not more than 9 per cent of the filament could be composed of hot gas, and about 10 per cent could be accounted for by such garden-variety matter as stars and galaxies. The remainder, the team concluded, must be dark matter.

Cosmologists believe that visible matter somehow follows the paths laid out in a "cosmic grid" of intersecting dark-matter filaments. The mechanism for how this occurs, however, remains a mystery – but now that a method has been demonstrated for mapping at least the most massive of those filaments, progress can be made towards understanding just how our universe came to be structured the way it is.

The Higgs boson at one end of the cosmic scale, and super-massive dark-matter filaments at the other – it's been a boffo week for boffins. ®

Bootnote

Speaking of that other boffinary discovery announced this week: A Higgs boson walks into a Catholic church. The priest says, "We don't allow Higgs bosons in here." Puzzled, the Higgs boson replies, "But without me, how can you have mass?"

We're here all week, folks.

High performance access to file storage

More from The Register

next story
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
Solar-powered aircraft unveiled for round-the-world flight
It's going to be a slow and sleepy flight for the pilots
Russian deputy PM: 'We are coming to the Moon FOREVER'
Plans to annex Earth's satellite with permanent base by 2030
LOHAN's Punch and Judy show relaunches Thursday
Weather looking good for second pop at test flights
Saturn spotted spawning new FEMTO-MOON
Icy 'Peggy' looks to be leaving the outer rings
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
India's GPS alternative launches second satellite
Closed satnav system due to have all seven birds aloft by 2016
Curiosity finds not-very-Australian-shaped rock on Mars
File under 'messianic pastries' and move on, people
Top Secret US payload launched into space successfully
Clandestine NRO spacecraft sets off on its unknown mission
prev story

Whitepapers

Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
HP ArcSight ESM solution helps Finansbank
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.